Documentation

Analysis.Section_9_9

Аналіз I, Глава 9.9 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter9.UniformContinuousOn.iff (f : ) (X : Set ) :
UniformContinuousOn f X ε > 0, δ > 0, x₀X, xX, δ.close x x₀ε.close (f x) (f x₀)

Визначення 9.9.2. Here we use the Mathlib term UniformContinuousOn

@[reducible, inline]
abbrev Real.close_seqs (ε : ) (a b : Chapter6.Sequence) :

Визначення 9.9.5. This is similar but not identical to Real.close_seq from Section 6.1.

Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      Equations
      Instances For
        theorem Chapter6.Sequence.equiv_iff_rat (a b : Sequence) :
        a.equiv b ε > 0, (↑ε).eventually_close_seqs a b

        Ремарка 9.9.6

        theorem Chapter6.Sequence.equiv_iff (a b : Sequence) :
        a.equiv b Filter.Tendsto (fun (n : ) => a.seq n - b.seq n) Filter.atTop (nhds 0)

        Лема 9.9.7 / Вправа 9.9.1

        theorem Chapter9.UniformContinuousOn.iff_preserves_equiv {X : Set } (f : ) :
        UniformContinuousOn f X ∀ (x y : ), (∀ (n : ), x n X)(∀ (n : ), y n X){ m := 0, seq := fun (n : ) => if n 0 then x n.toNat else 0, vanish := }.equiv { m := 0, seq := fun (n : ) => if n 0 then y n.toNat else 0, vanish := }{ m := 0, seq := fun (n : ) => if n 0 then (f x) n.toNat else 0, vanish := }.equiv { m := 0, seq := fun (n : ) => if n 0 then (f y) n.toNat else 0, vanish := }

        Твердження 9.9.8 / Вправа 9.9.2

        theorem Chapter9.Chapter6.Sequence.equiv_const (x₀ : ) (x : ) :
        Filter.Tendsto x Filter.atTop (nhds x₀) { m := 0, seq := fun (n : ) => if n 0 then x n.toNat else 0, vanish := }.equiv { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x₀) n.toNat else 0, vanish := }

        Ремарка 9.9.9

        @[reducible, inline]
        noncomputable abbrev Chapter9.f_9_9_10 :

        Приклад 9.9.10

        Equations
        Instances For
          @[reducible, inline]

          Приклад 9.9.11

          Equations
          Instances For
            theorem Chapter9.UniformContinuousOn.ofCauchy {X : Set } (f : ) (hf : UniformContinuousOn f X) {x : } (hx : { m := 0, seq := fun (n : ) => if n 0 then x n.toNat else 0, vanish := }.isCauchy) (hmem : ∀ (n : ), x n X) :
            { m := 0, seq := fun (n : ) => if n 0 then (f x) n.toNat else 0, vanish := }.isCauchy

            Твердження 9.9.12 / Вправа 9.9.3

            theorem Chapter9.UniformContinuousOn.limit_at_adherent {X : Set } (f : ) (hf : UniformContinuousOn f X) {x₀ : } (hx₀ : AdherentPt x₀ X) :
            ∃ (L : ), Filter.Tendsto f (nhds x₀Filter.principal X) (nhds L)

            Наслідок 9.9.14 / Вправа 9.9.4

            Твердження 9.9.15 / Вправа 9.9.5

            theorem Chapter9.UniformContinuousOn.of_continuousOn {a b : } (hab : a < b) {f : } (hcont : ContinuousOn f (Set.Icc a b)) :

            Теорема 9.9.16

            theorem Chapter9.UniformContinuousOn.comp {X Y : Set } {f g : } (hf : UniformContinuousOn f X) (hg : UniformContinuousOn g Y) (hrange : f '' X Y) :

            Вправа 9.9.6