Documentation

Analysis.Section_9_1

Аналіз I, Глава 9.1 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
abbrev Real.adherent' (ε x : ) (X : Set ) :

Визначення 9.1.5. Note that a slightly different Real.adherent was defined in Chapter 6.4

Equations
Instances For
    @[reducible, inline]
    abbrev Chapter9.AdherentPt (x : ) (X : Set ) :

    Визначення 9.1.

    Equations
    Instances For

      Визначення 9.1.10 (Closure). Here we identify this definition with the Mathilb version.

      identification of AdherentPt with Mathlib's ClusterPt

      Лема 9.1.11 / Вправа 9.1.2

      Лема 9.1.11 / Вправа 9.1.2

      Лема 9.1.11 / Вправа 9.1.2

      theorem Chapter9.closure_subset {X Y : Set } (h : X Y) :

      Лема 9.1.11 / Вправа 9.1.2

      theorem Chapter9.closure_of_subset_closure {X Y : Set } (h : X Y) (h' : Y closure X) :

      Вправа 9.1.1

      theorem Chapter9.closure_of_Ioo {a b : } (h : a < b) :

      Лема 9.1.12

      theorem Chapter9.closure_of_Ioc {a b : } (h : a < b) :
      theorem Chapter9.closure_of_Ico {a b : } (h : a < b) :
      theorem Chapter9.closure_of_Icc {a b : } (h : a b) :
      theorem Chapter9.closure_of_N :
      closure ((fun (n : ) => n) '' Set.univ) = (fun (n : ) => n) '' Set.univ

      Лема 9.1.13 / Вправа 9.1.3

      theorem Chapter9.closure_of_Z :
      closure ((fun (n : ) => n) '' Set.univ) = (fun (n : ) => n) '' Set.univ

      Лема 9.1.13 / Вправа 9.1.3

      theorem Chapter9.closure_of_Q :
      closure ((fun (n : ) => n) '' Set.univ) = Set.univ

      Лема 9.1.13 / Вправа 9.1.3

      theorem Chapter9.limit_of_AdherentPt (X : Set ) (x : ) :
      AdherentPt x X ∃ (a : ), (∀ (n : ), a n X) Filter.Tendsto a Filter.atTop (nhds x)

      Лема 9.1.14 / Вправа 9.1.5

      theorem Chapter9.AdherentPt.of_mem {X : Set } {x : } (h : x X) :

      Визначення 9.1.15. Here we use the Mathlib definition.

      theorem Chapter9.isClosed_def' (X : Set ) :
      IsClosed X ∀ (x : ), AdherentPt x Xx X
      theorem Chapter9.Icc_closed {a b : } (h : a b) :

      Приклади 9.1.16

      Приклади 9.1.16

      Приклади 9.1.16

      Приклади 9.1.16

      theorem Chapter9.Ico_not_closed {a b : } (h : a < b) :

      Приклади 9.1.16

      theorem Chapter9.Ioc_not_closed {a b : } (h : a < b) :

      Приклади 9.1.16

      theorem Chapter9.Ioo_not_closed {a b : } (h : a < b) :

      Приклади 9.1.16

      Приклади 9.1.16

      Приклади 9.1.16

      theorem Chapter9.N_closed :
      IsClosed ((fun (n : ) => n) '' Set.univ)

      Приклади 9.1.16

      theorem Chapter9.Z_closed :
      IsClosed ((fun (n : ) => n) '' Set.univ)

      Приклади 9.1.16

      theorem Chapter9.Q_not_closed :
      ¬IsClosed ((fun (n : ) => n) '' Set.univ)

      Приклади 9.1.16

      theorem Chapter9.isClosed_iff_limits_mem (X : Set ) :
      IsClosed X ∀ (a : ) (L : ), (∀ (n : ), a n X)Filter.Tendsto a Filter.atTop (nhds L)L X

      Наслідок 9.1.17

      @[reducible, inline]
      abbrev Chapter9.LimitPt (x : ) (X : Set ) :

      Визначення 9.1.18 (Limit points)

      Equations
      Instances For

        Identification with Mathlib's AccPt

        @[reducible, inline]
        abbrev Chapter9.IsolatedPt (x : ) (X : Set ) :

        Визначення 9.1.18 (Isolated points)

        Equations
        Instances For
          theorem Chapter9.LimitPt.iff_limit (x : ) (X : Set ) :
          LimitPt x X ∃ (a : ), (∀ (n : ), a n X \ {x}) Filter.Tendsto a Filter.atTop (nhds x)

          Ремарка 9.1.20

          theorem Chapter9.tendsto_mul_add_inv_atTop_nhds_zero (a c : ) (ha : a 0) :
          Filter.Tendsto (fun (x : ) => (a * x + c)⁻¹) Filter.atTop (nhds 0)

          This lemma is in more recent versions of Mathlib and can be deleted once Mathlib is updated.

          theorem Chapter9.mem_Icc_isLimit {a b x : } (h : a < b) (hx : x Set.Icc a b) :

          Лема 9.1.21

          theorem Chapter9.mem_Ico_isLimit {a b x : } (hx : x Set.Ico a b) :
          theorem Chapter9.mem_Ioc_isLimit {a b x : } (hx : x Set.Ioc a b) :
          theorem Chapter9.mem_Ioo_isLimit {a b x : } (hx : x Set.Ioo a b) :
          theorem Chapter9.mem_Ici_isLimit {a x : } (hx : x Set.Ici a) :
          theorem Chapter9.mem_Ioi_isLimit {a x : } (hx : x Set.Ioi a) :
          theorem Chapter9.mem_Iic_isLimit {a x : } (hx : x Set.Iic a) :
          theorem Chapter9.mem_Iio_isLimit {a x : } (hx : x Set.Iio a) :
          theorem Chapter9.isBounded_def (X : Set ) :
          Bornology.IsBounded X M > 0, X Set.Icc (-M) M

          Визначення 9.1.22. We use here Mathlib's Bornology.IsBounded

          Приклад 9.1.23

          Приклад 9.1.23

          theorem Chapter9.N_unbounded (a : ) :
          ¬Bornology.IsBounded ((fun (n : ) => n) '' Set.univ)

          Приклад 9.1.23

          theorem Chapter9.Z_unbounded (a : ) :
          ¬Bornology.IsBounded ((fun (n : ) => n) '' Set.univ)

          Приклад 9.1.23

          theorem Chapter9.Q_unbounded (a : ) :
          ¬Bornology.IsBounded ((fun (n : ) => n) '' Set.univ)

          Приклад 9.1.23

          Приклад 9.1.23

          theorem Chapter9.Heine_Borel (X : Set ) :
          IsClosed X Bornology.IsBounded X ∀ (a : ), (∀ (n : ), a n X)∃ (n : ), StrictMono n LX, Filter.Tendsto (fun (j : ) => a (n j)) Filter.atTop (nhds L)

          Теорема 9.1.24 / Вправа 9.1.13 (Heine-Borel theorem for the line)