Documentation

Analysis.Section_9_6

Аналіз I, Глава 9.6 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
abbrev Chapter9.BddAboveOn (f : ) (X : Set ) :

Визначення 9.6.1

Equations
Instances For
    @[reducible, inline]
    abbrev Chapter9.BddBelowOn (f : ) (X : Set ) :
    Equations
    Instances For
      @[reducible, inline]
      abbrev Chapter9.BddOn (f : ) (X : Set ) :
      Equations
      Instances For
        theorem Chapter9.BddOn.iff (f : ) (X : Set ) :

        Ремарка 9.6.2

        theorem Chapter9.why_7_6_3 {n : } (hn : StrictMono n) (j : ) :
        n j j
        theorem Chapter9.BddOn.of_continuous_on_compact {a b : } (h : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) :
        BddOn f (Set.Icc a b)

        Лема 7.6.3

        theorem Chapter9.BddAboveOn.isMaxOn {f : } {X : Set } {x₀ : } (h : IsMaxOn f X x₀) :

        Ремарка 9.6.6

        theorem Chapter9.BddBelowOn.isMinOn {f : } {X : Set } {x₀ : } (h : IsMinOn f X x₀) :
        theorem Chapter9.IsMaxOn.of_continuous_on_compact {a b : } (h : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) :
        xmaxSet.Icc a b, IsMaxOn f (Set.Icc a b) xmax

        Твердження 9.6.7 (Maximum principle)

        theorem Chapter9.IsMinOn.of_continuous_on_compact {a b : } (h : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) :
        xminSet.Icc a b, IsMinOn f (Set.Icc a b) xmin
        theorem Chapter9.sSup.of_isMaxOn {f : } {X : Set } {x₀ : } (hx₀ : x₀ X) (h : IsMaxOn f X x₀) :
        sSup (f '' X) = f x₀
        theorem Chapter9.sInf.of_isMinOn {f : } {X : Set } {x₀ : } (hx₀ : x₀ X) (h : IsMinOn f X x₀) :
        sInf (f '' X) = f x₀
        theorem Chapter9.sSup.of_continuous_on_compact {a b : } (h : a < b) (f : ) (hf : ContinuousOn f (Set.Icc a b)) :
        xmaxSet.Icc a b, sSup (f '' Set.Icc a b) = f xmax
        theorem Chapter9.sInf.of_continuous_on_compact {a b : } (h : a < b) (f : ) (hf : ContinuousOn f (Set.Icc a b)) :
        xminSet.Icc a b, sInf (f '' Set.Icc a b) = f xmin