Аналіз I, Глава 9.3 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Limits of continuous functions
- Connection with Mathilb's filter convergence concepts
- Limit laws for functions
Technical point: in the text, the functions f studied are defined only on subsets X of ℝ, and left undefined elsewhere. However, in Lean, this then creates some fiddly conversions when trying to restrict f to various subsets of X (which, technically, are not precisely subsets of ℝ, though they can be coerced to such). To avoid this issue we will deviate from the text by having our functions defined on all of ℝ (with the understanding that they are assigned "junk" values outside of the domain X of interest).
Визначення 9.3.6 (Convergence of functions at a point)
Equations
- Chapter9.Convergesto X f L x₀ = ∀ ε > 0, ε.close_near X f L x₀
Instances For
Твердження 9.3.9 / Вправа 9.3.1
Наслідок 9.3.13
Твердження 9.3.14 (Limit laws for functions)
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2. The hypothesis in the book that g is non-vanishing on E can be dropped.
Приклад 9.3.16
Приклад 9.3.16
Instances For
Твердження 9.3.18 / Вправа 9.3.3
Вправа 9.3.5 (Continuous version of squeeze test)