Аналіз I, Глава 9.3 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Limits of continuous functions
- Connection with Mathilb's filter convergence concepts
- Limit laws for functions
Technical point: in the text, the functions f
studied are defined only on subsets X
of ℝ
, and left undefined elsewhere. However, in Lean, this then creates some fiddly conversions when trying to restrict f
to various subsets of X
(which, technically, are not precisely subsets of ℝ
, though they can be coerced to such). To avoid this issue we will deviate from the text by having our functions defined on all of ℝ
(with the understanding that they are assigned "junk" values outside of the domain X
of interest).
Визначення 9.3.6 (Convergence of functions at a point)
Equations
- Chapter9.Convergesto X f L x₀ = ∀ ε > 0, ε.close_near X f L x₀
Instances For
Твердження 9.3.9 / Вправа 9.3.1
Наслідок 9.3.13
Твердження 9.3.14 (Limit laws for functions)
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2
Твердження 9.3.14 (Limit laws for functions) / Вправа 9.3.2. The hypothesis in the book that g is non-vanishing on E can be dropped.
Приклад 9.3.16
Приклад 9.3.16
Instances For
Твердження 9.3.18 / Вправа 9.3.3
Вправа 9.3.5 (Continuous version of squeeze test)