Аналіз I, Глава 9.4 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Continuity of functions
@[reducible, inline]
Приклад 9.4.6 -
Instances For
theorem
Chapter9.ContinuousWithinAt.tfae
(X : Set ℝ)
(f : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
:
[ContinuousWithinAt f X x₀, ∀ (a : ℕ → ℝ),
(∀ (n : ℕ), a n ∈ X) →
Filter.Tendsto a Filter.atTop (nhds x₀) → Filter.Tendsto (fun (n : ℕ) => f (a n)) Filter.atTop (nhds (f x₀)), ∀ ε > 0, ∃ δ > 0, ∀ x ∈ X, |x - x₀| < δ → |f x - f x₀| < ε].TFAE
Твердження 9.4.7 / Вправа 9.4.1. It is possible that the hypothesis x₀ ∈ X
is unnecessary.
theorem
Chapter9.Filter.Tendsto.comp_of_continuous
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ : ℝ}
(h : x₀ ∈ X)
(h_cont : ContinuousWithinAt f X x₀)
{a : ℕ → ℝ}
(ha : ∀ (n : ℕ), a n ∈ X)
(hconv : Filter.Tendsto a Filter.atTop (nhds x₀))
:
Filter.Tendsto (fun (n : ℕ) => f (a n)) Filter.atTop (nhds (f x₀))
Ремарка 9.4.8 -
theorem
Chapter9.ContinuousWithinAt.add
{X : Set ℝ}
(f g : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
(hf : ContinuousWithinAt f X x₀)
(hg : ContinuousWithinAt g X x₀)
:
ContinuousWithinAt (f + g) X x₀
theorem
Chapter9.ContinuousWithinAt.sub
{X : Set ℝ}
(f g : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
(hf : ContinuousWithinAt f X x₀)
(hg : ContinuousWithinAt g X x₀)
:
ContinuousWithinAt (f - g) X x₀
theorem
Chapter9.ContinuousWithinAt.max
{X : Set ℝ}
(f g : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
(hf : ContinuousWithinAt f X x₀)
(hg : ContinuousWithinAt g X x₀)
:
ContinuousWithinAt (f ⊔ g) X x₀
theorem
Chapter9.ContinuousWithinAt.min
{X : Set ℝ}
(f g : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
(hf : ContinuousWithinAt f X x₀)
(hg : ContinuousWithinAt g X x₀)
:
ContinuousWithinAt (f ⊓ g) X x₀
theorem
Chapter9.ContinuousWithinAt.mul'
{X : Set ℝ}
(f g : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
(hf : ContinuousWithinAt f X x₀)
(hg : ContinuousWithinAt g X x₀)
:
ContinuousWithinAt (f * g) X x₀
theorem
Chapter9.ContinuousWithinAt.div'
{X : Set ℝ}
(f g : ℝ → ℝ)
{x₀ : ℝ}
(h : x₀ ∈ X)
(hM : g x₀ ≠ 0)
(hf : ContinuousWithinAt f X x₀)
(hg : ContinuousWithinAt g X x₀)
:
ContinuousWithinAt (f / g) X x₀
Твердження 9.4.10 / Вправа 9.4.3
Твердження 9.4.11 / Вправа 9.4.4
theorem
Chapter9.ContinuousWithinAt.comp
{x : ℝ}
{X Y : Set ℝ}
{f g : ℝ → ℝ}
(hf : ∀ x ∈ X, f x ∈ Y)
{x₀ : ℝ}
(hx₀ : x ∈ X)
(hf_cont : ContinuousWithinAt f X x₀)
(hg_cont : ContinuousWithinAt g Y (f x₀))
:
ContinuousWithinAt (g ∘ f) X x₀
Твердження 9.4.13 / Вправа 9.4.5
theorem
Chapter9.ContinuousOn.restrict
{X Y : Set ℝ}
{f : ℝ → ℝ}
(hY : Y ⊆ X)
(hf : ContinuousOn f X)
:
ContinuousOn f Y
Вправа 9.4.6
theorem
Chapter9.Continuous.polynomial
{n : ℕ}
(c : Fin n → ℝ)
:
Continuous fun (x : ℝ) => ∑ i : Fin n, c i * x ^ ↑i
Вправа 9.4.7