Documentation

Analysis.Section_9_4

Аналіз I, Глава 9.4 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter9.ContinuousWithinAt.iff (X : Set ) (f : ) (x₀ : ) :
ContinuousWithinAt f X x₀ Convergesto X f (f x₀) x₀

Визначення 9.4.1. Here we use the Mathlib definition of continuity. The hypothesis x ∈ X is not needed!

@[reducible, inline]
noncomputable abbrev Chapter9.f_9_4_6 (x : ) :

Приклад 9.4.6 -

Equations
Instances For
    theorem Chapter9.ContinuousWithinAt.tfae (X : Set ) (f : ) {x₀ : } (h : x₀ X) :
    [ContinuousWithinAt f X x₀, ∀ (a : ), (∀ (n : ), a n X)Filter.Tendsto a Filter.atTop (nhds x₀)Filter.Tendsto (fun (n : ) => f (a n)) Filter.atTop (nhds (f x₀)), ε > 0, δ > 0, xX, |x - x₀| < δ|f x - f x₀| < ε].TFAE

    Твердження 9.4.7 / Вправа 9.4.1. It is possible that the hypothesis x₀ ∈ X is unnecessary.

    theorem Chapter9.Filter.Tendsto.comp_of_continuous {X : Set } {f : } {x₀ : } (h : x₀ X) (h_cont : ContinuousWithinAt f X x₀) {a : } (ha : ∀ (n : ), a n X) (hconv : Filter.Tendsto a Filter.atTop (nhds x₀)) :
    Filter.Tendsto (fun (n : ) => f (a n)) Filter.atTop (nhds (f x₀))

    Ремарка 9.4.8 -

    theorem Chapter9.ContinuousWithinAt.add {X : Set } (f g : ) {x₀ : } (h : x₀ X) (hf : ContinuousWithinAt f X x₀) (hg : ContinuousWithinAt g X x₀) :
    ContinuousWithinAt (f + g) X x₀
    theorem Chapter9.ContinuousWithinAt.sub {X : Set } (f g : ) {x₀ : } (h : x₀ X) (hf : ContinuousWithinAt f X x₀) (hg : ContinuousWithinAt g X x₀) :
    ContinuousWithinAt (f - g) X x₀
    theorem Chapter9.ContinuousWithinAt.max {X : Set } (f g : ) {x₀ : } (h : x₀ X) (hf : ContinuousWithinAt f X x₀) (hg : ContinuousWithinAt g X x₀) :
    ContinuousWithinAt (fg) X x₀
    theorem Chapter9.ContinuousWithinAt.min {X : Set } (f g : ) {x₀ : } (h : x₀ X) (hf : ContinuousWithinAt f X x₀) (hg : ContinuousWithinAt g X x₀) :
    ContinuousWithinAt (fg) X x₀
    theorem Chapter9.ContinuousWithinAt.mul' {X : Set } (f g : ) {x₀ : } (h : x₀ X) (hf : ContinuousWithinAt f X x₀) (hg : ContinuousWithinAt g X x₀) :
    ContinuousWithinAt (f * g) X x₀
    theorem Chapter9.ContinuousWithinAt.div' {X : Set } (f g : ) {x₀ : } (h : x₀ X) (hM : g x₀ 0) (hf : ContinuousWithinAt f X x₀) (hg : ContinuousWithinAt g X x₀) :
    ContinuousWithinAt (f / g) X x₀
    theorem Chapter9.Continuous.exp {a : } (ha : a > 0) :
    Continuous fun (x : ) => a ^ x

    Твердження 9.4.10 / Вправа 9.4.3

    theorem Chapter9.Continuous.exp' (p : ) :
    ContinuousOn (fun (x : ) => x ^ p) (Set.Ioi 0)

    Твердження 9.4.11 / Вправа 9.4.4

    theorem Chapter9.Continuous.abs :
    Continuous fun (x : ) => |x|

    Твердження 9.4.12

    theorem Chapter9.ContinuousWithinAt.comp {x : } {X Y : Set } {f g : } (hf : xX, f x Y) {x₀ : } (hx₀ : x X) (hf_cont : ContinuousWithinAt f X x₀) (hg_cont : ContinuousWithinAt g Y (f x₀)) :
    ContinuousWithinAt (g f) X x₀

    Твердження 9.4.13 / Вправа 9.4.5

    theorem Chapter9.ContinuousOn.restrict {X Y : Set } {f : } (hY : Y X) (hf : ContinuousOn f X) :

    Вправа 9.4.6

    theorem Chapter9.Continuous.polynomial {n : } (c : Fin n) :
    Continuous fun (x : ) => i : Fin n, c i * x ^ i

    Вправа 9.4.7