Аналіз I, Глава 6.1 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Definition of $ε$-closeness, $ε$-steadiness, and their eventual counterparts
- Notion of a Cauchy sequence, convergent sequence, and bounded sequence of reals
Sequences can be thought of as functions from ℤ to ℝ.
Equations
- Chapter6.Sequence.instCoeFun = { coe := fun (a : Chapter6.Sequence) => a.seq }
a.from n₁ starts a:Sequence
from n₁
. It is intended for use when n₁ ≥ n₀
, but returns
the "junk" value of the original sequence a
otherwise.
Equations
Instances For
Визначення 6.1.3 (Eventually ε-steady)
Equations
- ε.eventuallySteady a = ∃ N ≥ a.m, ε.steady (a.from N)
Instances For
Визначення 6.1.3 (Eventually ε-steady)
Визначення 6.1.3 (Cauchy sequence)
Equations
- a.isCauchy = ∀ ε > 0, ε.eventuallySteady a
Instances For
Визначення 6.1.3 (Cauchy sequence)
Equations
- Chapter6.Chapter5.Sequence.inst_coe_sequence = { coe := fun (a : Chapter5.Sequence) => { m := a.n₀, seq := fun (n : ℤ) => ↑(a.seq n), vanish := ⋯ } }
Визначення 6.1.5
Equations
- ε.eventually_close a L = ∃ N ≥ a.m, ε.close_seq (a.from N) L
Instances For
Визначення 6.1.5
Визначення 6.1.8
Визначення 6.1.8
Визначення 6.1.8. We give the limit of a sequence the junk value of 0 if it is not convergent.
Equations
- Chapter6.lim a = if h : a.convergent then Exists.choose h else 0
Instances For
Визначення 6.1.8
Визначення 6.1.8
Твердження 6.1.12 / Вправа 6.1.5
Наслідок 6.1.17
Теорема 6.1.19(a) (limit laws)
Теорема 6.1.19(b) (limit laws)
Теорема 6.1.19(c) (limit laws)
Теорема 6.1.19(d) (limit laws)
Теорема 6.1.19(e) (limit laws)
Теорема 6.1.19(f) (limit laws)
Теорема 6.1.19(g) (limit laws)
Теорема 6.1.19(h) (limit laws)