Documentation

Analysis.Section_5_epilogue

Аналіз I, Розділ 5, Епілог: Ізоморфізм із дійсними числами Mathlib #

Я (пр.перекл. Терренс Тао) намагався зробити переклад якомога точнішим перефразуванням оригінального тексту. Коли є вибір між більш ідіоматичним рішенням Lean та більш точним перекладом, я зазвичай обирав останній. Зокрема, будуть місця, де код Lean можна було б "підбуцнути", щоб зробити його більш елегантним та ідіоматичним, але я свідомо уникав цього вибору.

Відтепер Chapter5.Real вважатиметься застарілим, і замість нього ми використовуватимемо стандартні дійсні числа . Зокрема, для всіх наступних розділів слід використовувати повний API Mathlib для замість API Chapter5.Real.

Заповнення пропусків (sorries) тут потребує як API Chapter5.Real, так і API Mathlib для стандартних дійсних чисел . Таким чином, ці вправи є чудовою підготовкою до вищезгаданого переходу.

Підказки від попередніх користувачів #

Користувачі супровідного матеріалу, які виконали вправи в цьому розділі, можуть надсилати свої поради майбутнім користувачам цього розділу як PRи.

Instances For
    theorem Chapter5.DedekindCut.ext {x y : DedekindCut} (E : x.E = y.E) :
    x = y
    theorem Chapter5.isLowerSet_iff (E : Set ) :
    IsLowerSet E ∀ (q r : ), r < qq Er E
    @[reducible, inline]
    Equations
    Instances For
      theorem Chapter5.Real.toSet_Rat_nomax {x : Real} (q : ) :
      q x.toSet_Ratrx.toSet_Rat, r > q
      @[reducible, inline]
      Equations
      • x.toCut = { E := x.toSet_Rat, nonempty := , bounded := , lower := , nomax := }
      Instances For
        @[reducible, inline]
        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev Chapter5.DedekindCut.toReal (c : DedekindCut) :
          Equations
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              abbrev Real.toSet_Rat (x : ) :

              Тепер необхідно розробити аналогічні результати для дійсних чисел Mathlib.

              Equations
              Instances For
                theorem Real.toSet_Rat_nomax (x : ) (q : ) :
                q x.toSet_Ratrx.toSet_Rat, r > q
                @[reducible, inline]
                Equations
                • x.toCut = { E := x.toSet_Rat, nonempty := , bounded := , lower := , nomax := }
                Instances For
                  @[reducible, inline]
                  Equations
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev Chapter5.DedekindCut.toR (c : DedekindCut) :
                    Equations
                    Instances For
                      @[reducible, inline]
                      Equations
                      Instances For
                        @[reducible, inline]
                        noncomputable abbrev Chapter5.Real.equivR :

                        Ізоморфізм між дійсними числами Розділу 5 та дійсними числами Mathlib.

                        Equations
                        Instances For
                          theorem Chapter5.Real.equivR_nat {n : } :
                          equivR n = n
                          theorem Chapter5.Real.equivR_int {n : } :
                          equivR n = n
                          @[reducible, inline]
                          Equations
                          Instances For
                            theorem Chapter5.Sequence.Equiv.LimZero {a b : } (ha : (↑a).IsCauchy) (hb : (↑b).IsCauchy) (h : Equiv a b) :
                            theorem Chapter5.Real.mk_eq_mk {a b : } (ha : (↑a).IsCauchy) (hb : (↑b).IsCauchy) (hab : Sequence.Equiv a b) :
                            theorem Chapter5.Sequence.Equiv_iff_LimZero {a b : } (ha : (↑a).IsCauchy) (hb : (↑b).IsCauchy) :
                            theorem Chapter5.Sequence.difference_approaches_zero {a : } (ha : (↑a).IsCauchy) (ε : ) :
                            ε > 0∃ (N : ), nN, |LIM a - (a n)| ε
                            theorem Chapter5.Real.exists_equiv_above {a : } (ha : (↑a).IsCauchy) :
                            ∃ (b : ), (↑b).IsCauchy Sequence.Equiv a b ∀ (n : ), LIM a (b n)
                            theorem Chapter5.Real.exists_equiv_below {a : } (ha : (↑a).IsCauchy) :
                            ∃ (b : ), (↑b).IsCauchy Sequence.Equiv a b ∀ (n : ), (b n) LIM a
                            theorem Chapter5.Real.equivR_eq' {a : } (ha : (↑a).IsCauchy) :
                            theorem Chapter5.Real.equivR_eq (x : Real) :
                            ∃ (a : ) (ha : (↑a).IsCauchy), x = LIM a equivR x = Real.mk ha.CauSeq
                            @[reducible, inline]

                            Ізоморфізм зберігає порядок та кільцеві операції

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem Chapter5.Real.pow_of_equivR (x : Real) (n : ) :
                              equivR (x ^ n) = equivR x ^ n
                              theorem Chapter5.Real.zpow_of_equivR (x : Real) (n : ) :
                              equivR (x ^ n) = equivR x ^ n
                              theorem Chapter5.Real.ratPow_of_equivR (x : Real) (q : ) :
                              equivR (x ^ q) = equivR x ^ q