Documentation

Analysis.Section_5_epilogue

Аналіз I, Розділ 5, Епілог #

In this (technical) epilogue, we show that the "Chapter 5" real numbers Chapter5.Real are isomorphic in various standard senses to the standard real numbers . This we do by matching both structures with Dedekind cuts of the (Mathlib) rational numbers .

From this point onwards, Chapter5.Real will be deprecated, and we will use the standard real numbers instead. In particular, one should use the full Mathlib API for for all subsequent chapters, in lieu of the Chapter5.Real API.

Filling the sorries here requires both the Chapter5.Real API and the Mathlib API for the standard natural numbers . As such, they are excellent exercises to prepare you for the aforementioned transition.

Instances For
    theorem Chapter5.isLowerSet_iff (E : Set ) :
    IsLowerSet E ∀ (q r : ), r < qq Er E
    @[reducible, inline]
    Equations
    Instances For
      theorem Chapter5.Real.toSet_Rat_nomax {x : Real} (q : ) :
      q x.toSet_Ratrx.toSet_Rat, r > q
      @[reducible, inline]
      Equations
      • x.toCut = { E := x.toSet_Rat, nonempty := , bounded := , lower := , nomax := }
      Instances For
        @[reducible, inline]
        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev Chapter5.DedekindCut.toReal (c : DedekindCut) :
          Equations
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              abbrev Real.toSet_Rat (x : ) :

              Now to develop analogous results for the Mathlib reals.

              Equations
              Instances For
                theorem Real.toSet_Rat_nomax (x : ) (q : ) :
                q x.toSet_Ratrx.toSet_Rat, r > q
                @[reducible, inline]
                Equations
                • x.toCut = { E := x.toSet_Rat, nonempty := , bounded := , lower := , nomax := }
                Instances For
                  @[reducible, inline]
                  Equations
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev Chapter5.DedekindCut.toR (c : DedekindCut) :
                    Equations
                    Instances For
                      @[reducible, inline]
                      Equations
                      Instances For
                        @[reducible, inline]
                        noncomputable abbrev Chapter5.Real.equivR :

                        The isomorphism between the Chapter 5 reals and the Mathlib reals.

                        Equations
                        Instances For
                          @[reducible, inline]

                          The isomorphism preserves order and ring operations

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For