Documentation

Analysis.Section_9_5

Аналіз I, Глава 9.5 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
abbrev Chapter9.right_limit_exists (X : Set ) (f : ) (x₀ : ) :

Визначення 9.5.1. We give left and right limits the "junk" value of 0 if the limit does not exist.

Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev Chapter9.right_limit (X : Set ) (f : ) (x₀ : ) :
    Equations
    Instances For
      @[reducible, inline]
      abbrev Chapter9.left_limit_exists (X : Set ) (f : ) (x₀ : ) :
      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev Chapter9.left_limit (X : Set ) (f : ) (x₀ : ) :
        Equations
        Instances For
          theorem Chapter9.right_limit.eq {X : Set } {f : } {x₀ L : } (had : AdherentPt x₀ (X Set.Ioi x₀)) (h : Filter.Tendsto f (nhds x₀Filter.principal (X Set.Ioi x₀)) (nhds L)) :
          right_limit X f x₀ = L
          theorem Chapter9.left_limit.eq {X : Set } {f : } {x₀ L : } (had : AdherentPt x₀ (X Set.Iio x₀)) (h : Filter.Tendsto f (nhds x₀Filter.principal (X Set.Iio x₀)) (nhds L)) :
          left_limit X f x₀ = L
          theorem Chapter9.right_limit.eq' {X : Set } {f : } {x₀ : } (h : right_limit_exists X f x₀) :
          Filter.Tendsto f (nhds x₀Filter.principal (X Set.Ioi x₀)) (nhds (right_limit X f x₀))
          theorem Chapter9.left_limit.eq' {X : Set } {f : } {x₀ : } (h : left_limit_exists X f x₀) :
          Filter.Tendsto f (nhds x₀Filter.principal (X Set.Iio x₀)) (nhds (left_limit X f x₀))
          theorem Chapter9.right_limit.conv {X : Set } {f : } {x₀ L : } (had : AdherentPt x₀ (X Set.Ioi x₀)) (h : right_limit_exists X f x₀) (a : ) (ha : ∀ (n : ), a n X Set.Ioi x₀) (hconv : Filter.Tendsto a Filter.atTop (nhds x₀)) :
          Filter.Tendsto (fun (n : ) => f (a n)) Filter.atTop (nhds (right_limit X f x₀))
          theorem Chapter9.left_limit.conv {X : Set } {f : } {x₀ L : } (had : AdherentPt x₀ (X Set.Iio x₀)) (h : left_limit_exists X f x₀) (a : ) (ha : ∀ (n : ), a n X Set.Iio x₀) (hconv : Filter.Tendsto a Filter.atTop (nhds x₀)) :
          Filter.Tendsto (fun (n : ) => f (a n)) Filter.atTop (nhds (left_limit X f x₀))
          theorem Chapter9.ContinuousAt.iff_eq_left_right_limit {X : Set } {f : } {x₀ : } (h : x₀ X) (had_left : AdherentPt x₀ (X Set.Iio x₀)) (had_right : AdherentPt x₀ (X Set.Ioi x₀)) :
          ContinuousWithinAt f X x₀ right_limit_exists X f x₀ left_limit_exists X f x₀ right_limit X f x₀ = f x₀ left_limit X f x₀ = f x₀

          Твердження 9.5.3

          @[reducible, inline]
          abbrev Chapter9.has_jump_discontinuity (X : Set ) (f : ) (x₀ : ) :
          Equations
          Instances For
            @[reducible, inline]
            abbrev Chapter9.has_removable_discontinuity (X : Set ) (f : ) (x₀ : ) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For