Аналіз I, Глава 9.5 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Left and right limits
@[reducible, inline]
Визначення 9.5.1. We give left and right limits the "junk" value of 0 if the limit does not exist.
Equations
- Chapter9.right_limit_exists X f x₀ = ∃ (L : ℝ), Filter.Tendsto f (nhds x₀ ⊓ Filter.principal (X ∩ Set.Ioi x₀)) (nhds L)
Instances For
@[reducible, inline]
Equations
- Chapter9.right_limit X f x₀ = if h : Chapter9.right_limit_exists X f x₀ then Exists.choose h else 0
Instances For
@[reducible, inline]
Equations
- Chapter9.left_limit_exists X f x₀ = ∃ (L : ℝ), Filter.Tendsto f (nhds x₀ ⊓ Filter.principal (X ∩ Set.Iio x₀)) (nhds L)
Instances For
@[reducible, inline]
Equations
- Chapter9.left_limit X f x₀ = if h : Chapter9.left_limit_exists X f x₀ then Exists.choose h else 0
Instances For
theorem
Chapter9.right_limit.eq
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ L : ℝ}
(had : AdherentPt x₀ (X ∩ Set.Ioi x₀))
(h : Filter.Tendsto f (nhds x₀ ⊓ Filter.principal (X ∩ Set.Ioi x₀)) (nhds L))
:
theorem
Chapter9.left_limit.eq
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ L : ℝ}
(had : AdherentPt x₀ (X ∩ Set.Iio x₀))
(h : Filter.Tendsto f (nhds x₀ ⊓ Filter.principal (X ∩ Set.Iio x₀)) (nhds L))
:
theorem
Chapter9.right_limit.eq'
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ : ℝ}
(h : right_limit_exists X f x₀)
:
Filter.Tendsto f (nhds x₀ ⊓ Filter.principal (X ∩ Set.Ioi x₀)) (nhds (right_limit X f x₀))
theorem
Chapter9.left_limit.eq'
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ : ℝ}
(h : left_limit_exists X f x₀)
:
Filter.Tendsto f (nhds x₀ ⊓ Filter.principal (X ∩ Set.Iio x₀)) (nhds (left_limit X f x₀))
theorem
Chapter9.right_limit.conv
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ L : ℝ}
(had : AdherentPt x₀ (X ∩ Set.Ioi x₀))
(h : right_limit_exists X f x₀)
(a : ℕ → ℝ)
(ha : ∀ (n : ℕ), a n ∈ X ∩ Set.Ioi x₀)
(hconv : Filter.Tendsto a Filter.atTop (nhds x₀))
:
Filter.Tendsto (fun (n : ℕ) => f (a n)) Filter.atTop (nhds (right_limit X f x₀))
theorem
Chapter9.left_limit.conv
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ L : ℝ}
(had : AdherentPt x₀ (X ∩ Set.Iio x₀))
(h : left_limit_exists X f x₀)
(a : ℕ → ℝ)
(ha : ∀ (n : ℕ), a n ∈ X ∩ Set.Iio x₀)
(hconv : Filter.Tendsto a Filter.atTop (nhds x₀))
:
Filter.Tendsto (fun (n : ℕ) => f (a n)) Filter.atTop (nhds (left_limit X f x₀))
theorem
Chapter9.ContinuousAt.iff_eq_left_right_limit
{X : Set ℝ}
{f : ℝ → ℝ}
{x₀ : ℝ}
(h : x₀ ∈ X)
(had_left : AdherentPt x₀ (X ∩ Set.Iio x₀))
(had_right : AdherentPt x₀ (X ∩ Set.Ioi x₀))
:
ContinuousWithinAt f X x₀ ↔ right_limit_exists X f x₀ ∧ left_limit_exists X f x₀ ∧ right_limit X f x₀ = f x₀ ∧ left_limit X f x₀ = f x₀
Твердження 9.5.3
@[reducible, inline]
Equations
- Chapter9.has_jump_discontinuity X f x₀ = (Chapter9.right_limit_exists X f x₀ ∧ Chapter9.left_limit_exists X f x₀ ∧ Chapter9.right_limit X f x₀ ≠ Chapter9.left_limit X f x₀)