Documentation

Analysis.Section_10_5

Аналіз I, Глава 10.5 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Filter.Tendsto.of_div {X : Set } {f g : } {x₀ f'x₀ g'x₀ : } (hfx₀ : f x₀ = 0) (hgx₀ : g x₀ = 0) (hg_non : g'x₀ 0) (hf'x₀ : HasDerivWithinAt f f'x₀ X x₀) (hg'x₀ : HasDerivWithinAt g g'x₀ X x₀) :
(∃ δ > 0, xX \ {x₀} Set.Ioo (x₀ - δ) (x₀ + δ), g x 0) Tendsto (fun (x : ) => f x / g x) (nhdsWithin x₀ (X \ {x₀})) (nhds (f'x₀ / g'x₀))

Твердження 10.5.1 (L'Hôpital's rule, I) / Вправа 10.5.1

theorem Filter.Tendsto.of_div' {a b L : } (hab : a < b) {f g f' g' : } (hf : DifferentiableOn f (Set.Icc a b)) (hg : DifferentiableOn g (Set.Icc a b)) (hf' : f' = derivWithin f (Set.Icc a b)) (hg' : g' = derivWithin g (Set.Icc a b)) (hfa : f a = 0) (hga : g a = 0) (hgnon : xSet.Icc a b, g' x 0) (hderiv : Tendsto (fun (x : ) => f' x / g' x) (nhdsWithin a (Set.Icc a b)) (nhds L)) :
(∀ xSet.Ioc a b, g x 0) Tendsto (fun (x : ) => f x / g x) (nhdsWithin a (Set.Ioc a b)) (nhds L)

Твердження 10.5.2 (L'Hôpital's rule, II)