Documentation

Analysis.Section_10_2

Аналіз I, Глава 10.2 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter10.IsLocalMaxOn.iff (X : Set ) (f : ) (x₀ : ) :
IsLocalMaxOn f X x₀ δ > 0, IsMaxOn f (X Set.Ioo (x₀ - δ) (x₀ + δ)) x₀

Визначення 10.2.1 (Local maxima and minima). Here we use Mathlib's IsLocalMaxOn type.

theorem Chapter10.IsLocalMinOn.iff (X : Set ) (f : ) (x₀ : ) :
IsLocalMinOn f X x₀ δ > 0, IsMinOn f (X Set.Ioo (x₀ - δ) (x₀ + δ)) x₀
@[reducible, inline]

Приклад 10.2.3

Equations
Instances For
    theorem Chapter10.IsLocalMaxOn.of_restrict {X Y : Set } (hXY : Y X) (f : ) (x₀ : ) (h : IsLocalMaxOn f X x₀) :
    IsLocalMaxOn f Y x₀

    Ремарка 10.2.5

    theorem Chapter10.IsLocalMinOn.of_restrict {X Y : Set } (hXY : Y X) (f : ) (x₀ : ) (h : IsLocalMinOn f X x₀) :
    IsLocalMinOn f Y x₀
    theorem Chapter10.IsLocalMaxOn.deriv_eq_zero {a b : } (hab : a < b) {f : } {x₀ : } (hx₀ : x₀ Set.Ioo a b) (h : IsLocalMaxOn f (Set.Ioo a b) x₀) {L : } (hderiv : HasDerivWithinAt f L (Set.Ioo a b) x₀) :
    L = 0

    Твердження 10.2.6 (Local extrema are stationary) / Вправа 10.2.1

    theorem Chapter10.IsLocalMinOn.deriv_eq_zero {a b : } (hab : a < b) {f : } {x₀ : } (hx₀ : x₀ Set.Ioo a b) (h : IsLocalMinOn f (Set.Ioo a b) x₀) {L : } (hderiv : HasDerivWithinAt f L (Set.Ioo a b) x₀) :
    L = 0

    Твердження 10.2.6 (Local extrema are stationary) / Вправа 10.2.1

    theorem Chapter10.IsMaxOn.deriv_eq_zero_counter :
    ∃ (a : ) (b : ) (_ : a < b) (f : ) (x₀ : ) (_ : x₀ Set.Icc a b) (_ : IsMaxOn f (Set.Icc a b) x₀) (L : ) (_ : HasDerivWithinAt f L (Set.Icc a b) x₀), L 0
    theorem Chapter10.HasDerivWithinAt.exist_zero {a b : } (hab : a < b) {g : } (hcont : ContinuousOn g (Set.Icc a b)) (hderiv : DifferentiableOn g (Set.Ioo a b)) (hgab : g a = g b) :
    xSet.Ioo a b, HasDerivWithinAt g 0 (Set.Ioo a b) x

    Теорема 10.2.7 (Rolle's theorem) / Вправа 10.2.4

    theorem Chapter10.HasDerivWithinAt.mean_value {a b : } (hab : a < b) {f : } (hcont : ContinuousOn f (Set.Icc a b)) (hderiv : DifferentiableOn f (Set.Ioo a b)) :
    xSet.Ioo a b, HasDerivWithinAt f ((f b - f a) / (b - a)) (Set.Ioo a b) x

    Наслідок 10.2.9 (Mean value theorem ) / Вправа 10.2.5

    theorem Chapter10.lipschitz_bound {M a b : } (hM : M > 0) (hab : a < b) {f : } (hcont : ContinuousOn f (Set.Icc a b)) (hderiv : DifferentiableOn f (Set.Ioo a b)) (hlip : xSet.Ioo a b, |derivWithin f (Set.Ioo a b) x| M) {x y : } (hx : x Set.Ioo a b) (hy : y Set.Ioo a b) :
    |f x - f y| M * |x - y|

    Вправа 10.2.6