Аналіз I, Глава 10.1 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- API for Mathlib's
HasDerivWithinAt
,derivWithin
, andDifferentiableWithinAt
.
Note that the Mathlib conventions differ slightly from that in the text, in that
differentiability is defined even at points that are not limit points of the domain;
derivatives in such cases may not be unique, but derivWithin
still selects one such
derivative in such cases (or 0
, if no derivative exists).
Визначення 10.1.1 (Differentiability at a point). For the Mathlib notion HasDerivWithinAt
, the
hypothesis that x₀
is a limit point is not needed.
Приклад 10.1.6
Equations
Instances For
Твердження 10.0.1 / Вправа 10.1.3
Наслідок 10.1.12
Теорема 10.1.13 (a) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (b) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (c) (Sum rule) / Вправа 10.1.4
Теорема 10.1.13 (d) (Product rule) / Вправа 10.1.4
Теорема 10.1.13 (e) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (f) (Difference rule) / Вправа 10.1.4
Теорема 10.1.13 (g) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (h) (Quotient rule) / Вправа 10.1.4
Теорема 10.1.15 (Chain rule) / Вправа 10.1.7