Аналіз I, Глава 10.1 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- API for Mathlib's
HasDerivWithinAt,derivWithin, andDifferentiableWithinAt.
Note that the Mathlib conventions differ slightly from that in the text, in that
differentiability is defined even at points that are not limit points of the domain;
derivatives in such cases may not be unique, but derivWithin still selects one such
derivative in such cases (or 0, if no derivative exists).
Визначення 10.1.1 (Differentiability at a point). For the Mathlib notion HasDerivWithinAt, the
hypothesis that x₀ is a limit point is not needed.
Приклад 10.1.6
Equations
Instances For
Твердження 10.0.1 / Вправа 10.1.3
Наслідок 10.1.12
Теорема 10.1.13 (a) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (b) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (c) (Sum rule) / Вправа 10.1.4
Теорема 10.1.13 (d) (Product rule) / Вправа 10.1.4
Теорема 10.1.13 (e) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (f) (Difference rule) / Вправа 10.1.4
Теорема 10.1.13 (g) (Differential calculus) / Вправа 10.1.4
Теорема 10.1.13 (h) (Quotient rule) / Вправа 10.1.4
Теорема 10.1.15 (Chain rule) / Вправа 10.1.7