Documentation

Analysis.Section_10_1

Аналіз I, Глава 10.1 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

Note that the Mathlib conventions differ slightly from that in the text, in that differentiability is defined even at points that are not limit points of the domain; derivatives in such cases may not be unique, but derivWithin still selects one such derivative in such cases (or 0, if no derivative exists).

theorem HasDerivWithinAt.iff (X : Set ) (x₀ : ) (f : ) (L : ) :
HasDerivWithinAt f L X x₀ Filter.Tendsto (fun (x : ) => (f x - f x₀) / (x - x₀)) (nhds x₀Filter.principal (X \ {x₀})) (nhds L)

Визначення 10.1.1 (Differentiability at a point). For the Mathlib notion HasDerivWithinAt, the hypothesis that x₀ is a limit point is not needed.

theorem DifferentiableWithinAt.iff (X : Set ) (x₀ : ) (f : ) :
DifferentiableWithinAt f X x₀ ∃ (L : ), HasDerivWithinAt f L X x₀
theorem DifferentiableWithinAt.of_hasDeriv {X : Set } {x₀ : } {f : } {L : } (hL : HasDerivWithinAt f L X x₀) :
theorem Chapter10.derivative_unique {X : Set } {x₀ : } (hx₀ : ClusterPt x₀ (Filter.principal (X \ {x₀}))) {f : } {L L' : } (hL : HasDerivWithinAt f L X x₀) (hL' : HasDerivWithinAt f L' X x₀) :
L = L'
theorem Chapter10.derivative_unique' (X : Set ) {x₀ : } (hx₀ : ClusterPt x₀ (Filter.principal (X \ {x₀}))) {f : } {L : } (hL : HasDerivWithinAt f L X x₀) (hdiff : DifferentiableWithinAt f X x₀) :
L = derivWithin f X x₀
@[reducible, inline]

Приклад 10.1.6

Equations
Instances For
    theorem HasDerivWithinAt.iff_approx_linear (X : Set ) (x₀ : ) (f : ) (L : ) :
    HasDerivWithinAt f L X x₀ ε > 0, δ > 0, xX, |x - x₀| < δ|f x - f x₀ - L * (x - x₀)| ε * |x - x₀|

    Твердження 10.1.7 (Newton's approximation) / Вправа 10.1.2

    Твердження 10.0.1 / Вправа 10.1.3

    Наслідок 10.1.12

    theorem HasDerivWithinAt.of_const (X : Set ) (x₀ c : ) :
    HasDerivWithinAt (fun (x : ) => c) 0 X x₀

    Теорема 10.1.13 (a) (Differential calculus) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_id (X : Set ) (x₀ : ) :
    HasDerivWithinAt (fun (x : ) => x) 1 X x₀

    Теорема 10.1.13 (b) (Differential calculus) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_add {X : Set } {x₀ f'x₀ g'x₀ : } {f g : } (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'x₀ X x₀) :
    HasDerivWithinAt (f + g) (f'x₀ + g'x₀) X x₀

    Теорема 10.1.13 (c) (Sum rule) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_mul {X : Set } {x₀ f'x₀ g'x₀ : } {f g : } (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'x₀ X x₀) :
    HasDerivWithinAt (f * g) (f'x₀ * g x₀ + f x₀ * g'x₀) X x₀

    Теорема 10.1.13 (d) (Product rule) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_smul {X : Set } {x₀ f'x₀ : } (c : ) {f : } (hf : HasDerivWithinAt f f'x₀ X x₀) :
    HasDerivWithinAt (c f) (c * f'x₀) X x₀

    Теорема 10.1.13 (e) (Differential calculus) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_sub {X : Set } {x₀ f'x₀ g'x₀ : } {f g : } (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'x₀ X x₀) :
    HasDerivWithinAt (f - g) (f'x₀ - g'x₀) X x₀

    Теорема 10.1.13 (f) (Difference rule) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_inv {X : Set } {x₀ g'x₀ : } {g : } (hgx₀ : g x₀ 0) (hg : HasDerivWithinAt g g'x₀ X x₀) :
    HasDerivWithinAt (1 / g) (-g'x₀ / g x₀ ^ 2) X x₀

    Теорема 10.1.13 (g) (Differential calculus) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_div {X : Set } {x₀ f'x₀ g'x₀ : } {f g : } (hgx₀ : g x₀ 0) (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'x₀ X x₀) :
    HasDerivWithinAt (f / g) ((f'x₀ * g x₀ - f x₀ * g'x₀) / g x₀ ^ 2) X x₀

    Теорема 10.1.13 (h) (Quotient rule) / Вправа 10.1.4

    theorem HasDerivWithinAt.of_comp {X Y : Set } {x₀ y₀ f'x₀ g'y₀ : } {f g : } (hfx₀ : f x₀ = y₀) (hfX : xX, f x Y) (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'y₀ Y y₀) :
    HasDerivWithinAt (g f) (g'y₀ * f'x₀) X x₀

    Теорема 10.1.15 (Chain rule) / Вправа 10.1.7

    theorem HasDerivWithinAt.of_pow (n : ) (x₀ : ) :
    HasDerivWithinAt (fun (x : ) => x ^ n) (n * x₀ ^ (n - 1)) Set.univ x₀

    Вправа 10.1.5

    theorem HasDerivWithinAt.of_zpow (n : ) (x₀ : ) (hx₀ : x₀ 0) :
    HasDerivWithinAt (fun (x : ) => x ^ n) (n * x₀ ^ (n - 1)) (Set.univ \ {0}) x₀

    Вправа 10.1.6