Documentation

Analysis.Section_10_4

Аналіз I, Глава 10.4 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem HasDerivWithinAt.of_inverse {X Y : Set } {f g : } (hfXY : xX, f x Y) (hgf : xX, g (f x) = x) {x₀ y₀ f'x₀ g'y₀ : } (hx₀ : x₀ X) (hfx₀ : f x₀ = y₀) (hcluster : ClusterPt x₀ (Filter.principal (X \ {x₀}))) (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'y₀ Y y₀) :
g'y₀ * f'x₀ = 1

Лема 10.4.1

theorem HasDerivWithinAt.of_inverse' {X Y : Set } {f g : } (hfXY : xX, f x Y) (hgf : xX, g (f x) = x) {x₀ y₀ f'x₀ g'y₀ : } (hx₀ : x₀ X) (hfx₀ : f x₀ = y₀) (hcluster : ClusterPt x₀ (Filter.principal (X \ {x₀}))) (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : HasDerivWithinAt g g'y₀ Y y₀) :
g'y₀ = 1 / f'x₀
theorem HasDerivWithinAt.of_inverse_of_zero_deriv {X Y : Set } {f g : } (hfXY : xX, f x Y) (hgf : xX, g (f x) = x) {x₀ y₀ : } (hx₀ : x₀ X) (hfx₀ : f x₀ = y₀) (hcluster : ClusterPt x₀ (Filter.principal (X \ {x₀}))) (hf : HasDerivWithinAt f 0 X x₀) :
theorem Chapter10.inverse_function_theorem {X Y : Set } {f g : } (hfXY : xX, f x Y) (hgYX : yY, g y X) (hgf : xX, g (f x) = x) (hfg : yY, f (g y) = y) {x₀ y₀ f'x₀ : } (hx₀ : x₀ X) (hfx₀ : f x₀ = y₀) (hne : f'x₀ 0) (hcluster : ClusterPt x₀ (Filter.principal (X \ {x₀}))) (hf : HasDerivWithinAt f f'x₀ X x₀) (hg : ContinuousWithinAt g Y y₀) :
HasDerivWithinAt g (1 / f'x₀) Y y₀

Теорема 10.4.2 (Inverse function theorem)