Documentation

Analysis.Section_9_7

Аналіз I, Глава 9.7 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter9.intermediate_value {a b : } (hab : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) {y : } (hy : y Set.Icc (f a) (f b) y Set.Icc (f a) (f b)) :
cSet.Icc a b, f c = y

Теорема 9.7.1 (Intermediate value theorem)

@[reducible, inline]
noncomputable abbrev Chapter9.f_9_7_1 :
Equations
Instances For
    @[reducible, inline]

    Ремарка 9.7.2

    Equations
    Instances For
      theorem Chapter9.continuous_image_Icc {a b : } (hab : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) {y : } (hy : sInf (f '' Set.Icc a b) y y sSup (f '' Set.Icc a b)) :
      cSet.Icc a b, f c = y

      Наслідок 9.7.4 (Images of continuous functions) / Вправа 9.7.1

      theorem Chapter9.continuous_image_Icc' {a b : } (hab : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) :
      f '' Set.Icc a b = Set.Icc (sInf (f '' Set.Icc a b)) (sSup (f '' Set.Icc a b))
      theorem Chapter9.exists_fixed_pt {f : } (hf : ContinuousOn f (Set.Icc 0 1)) (hmap : f '' Set.Icc 0 1 Set.Icc 0 1) :
      xSet.Icc 0 1, f x = x

      Вправа 9.7.2