Documentation

Analysis.Section_7_4

Аналіз I, Глава 7.4 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter7.Series.sum_eq_sum (b : ) {N : } (hN : N 0) :
(∑ nFinset.Icc 0 N, if 0 n then b n.toNat else 0) = nFinset.Iic N.toNat, b n
theorem Chapter7.Series.converges_of_permute_nonneg {a : } (ha : { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.nonneg) (hconv : { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.converges) {f : } (hf : Function.Bijective f) :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a (f n)) n.toNat else 0, vanish := }.converges { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.sum = { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a (f n)) n.toNat else 0, vanish := }.sum

Твердження 7.4.1

theorem Chapter7.Series.zeta_2_converges :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => 1 / (n + 1) ^ 2) n.toNat else 0, vanish := }.converges

Приклад 7.4.2

theorem Chapter7.Series.permuted_zeta_2_converges :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => if Even n then 1 / (n + 2) ^ 2 else 1 / n ^ 2) n.toNat else 0, vanish := }.converges
theorem Chapter7.Series.permuted_zeta_2_eq_zeta_2 :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => if Even n then 1 / (n + 2) ^ 2 else 1 / n ^ 2) n.toNat else 0, vanish := }.sum = { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => 1 / (n + 1) ^ 2) n.toNat else 0, vanish := }.sum
theorem Chapter7.Series.absConverges_of_permute {a : } (ha : { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.absConverges) {f : } (hf : Function.Bijective f) :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a (f n)) n.toNat else 0, vanish := }.absConverges { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.sum = { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a (f n)) n.toNat else 0, vanish := }.sum

Твердження 7.4.3 (Rearrangement of series)

@[reducible, inline]
noncomputable abbrev Chapter7.Series.a_7_4_4 :

Приклад 7.4.4

Equations
Instances For
    theorem Chapter7.Series.ex_7_4_4_conv :
    { m := 0, seq := fun (n : ) => if n 0 then a_7_4_4 n.toNat else 0, vanish := }.converges
    theorem Chapter7.Series.ex_7_4_4_sum :
    { m := 0, seq := fun (n : ) => if n 0 then a_7_4_4 n.toNat else 0, vanish := }.sum > 0
    @[reducible, inline]
    Equations
    Instances For
      theorem Chapter7.Series.ex_7_4_4'_conv :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a_7_4_4 (f_7_4_4 n)) n.toNat else 0, vanish := }.converges
      theorem Chapter7.Series.ex_7_4_4'_sum :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a_7_4_4 (f_7_4_4 n)) n.toNat else 0, vanish := }.sum < 0
      theorem Chapter7.Series.absConverges_of_subseries {a : } (ha : { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.absConverges) {f : } (hf : StrictMono f) :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a (f n)) n.toNat else 0, vanish := }.absConverges

      Вправа 7.4.1