Documentation

Analysis.Section_7_3

Аналіз I, Глава 7.3 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
Equations
Instances For
    @[reducible, inline]
    Equations
    • =
    Instances For
      theorem Chapter7.Series.converges_of_nonneg_iff {s : Series} (h : s.nonneg) :
      s.converges ∃ (M : ), ∀ (N : ), s.partial N M

      Твердження 7.3.1

      theorem Chapter7.Series.converges_of_le {s t : Series} (hm : s.m = t.m) (hcomp : ns.m, |s.seq n| t.seq n) (hconv : t.converges) :

      Наслідок 7.3.2 (Comparison test) / Вправа 7.3.1

      theorem Chapter7.Series.diverges_of_ge {s t : Series} (hm : s.m = t.m) (hcomp : ns.m, |s.seq n| t.seq n) (hdiv : ¬s.absConverges) :
      theorem Chapter7.Series.converges_geom {x : } (hx : |x| < 1) :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := }.convergesTo (1 / (1 - x))

      Лема 7.3.3 (Geometric series) / Вправа 7.3.2

      theorem Chapter7.Series.absConverges_geom {x : } (hx : |x| < 1) :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := }.absConverges
      theorem Chapter7.Series.diverges_geom {x : } (hx : |x| 1) :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := }.diverges
      theorem Chapter7.Series.converges_geom_iff (x : ) :
      { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := }.converges |x| < 1
      theorem Chapter7.Series.cauchy_criterion {s : Series} (hm : s.m = 1) (hs : s.nonneg) (hmono : n1, s.seq (n + 1) s.seq n) :
      s.converges { m := 0, seq := fun (n : ) => if n 0 then (fun (k : ) => 2 ^ k * s.seq (2 ^ k)) n.toNat else 0, vanish := }.converges

      Твердження 7.3.4 (Cauchy criterion)

      theorem Chapter7.Series.converges_qseries (q : ) (hq : q > 0) :
      (mk' fun (n : { n : // n 1 }) => 1 / n ^ q).converges q > 1

      Наслідок 7.3.7

      theorem Chapter7.Series.zeta_eq {q : } (hq : q > 1) :
      (mk' fun (n : { n : // n 1 }) => 1 / n ^ q).sum = riemannZeta q

      Ремарка 7.3.8

      theorem Chapter7.Series.Basel_problem :
      (mk' fun (n : { n : // n 1 }) => 1 / n ^ 2).sum = Real.pi ^ 2 / 6
      theorem Chapter7.Series.nonneg_sum_zero {a : } (ha : { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.nonneg) (hconv : { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.converges) :
      { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.sum = 0 ∀ (n : ), a n = 0

      Вправа 7.3.3