Documentation

Analysis.Section_7_2

Аналіз I, Глава 7.2 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

Визначення 7.2.1 (Formal infinite series). This is similar to Chapter 6 sequence, but is manipulated differently. As with Chapter 5, we will start series from 0 by default.

Instances For
    theorem Chapter7.Series.ext {x y : Series} (m : x.m = y.m) (seq : x.seq = y.seq) :
    x = y
    theorem Chapter7.Series.ext_iff {x y : Series} :
    x = y x.m = y.m x.seq = y.seq

    Functions from ℕ to ℝ can be thought of as series.

    Equations
    @[simp]
    theorem Chapter7.Series.eval_coe (a : ) (n : ) :
    { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.seq n = a n
    @[reducible, inline]
    abbrev Chapter7.Series.mk' {m : } (a : { n : // n m }) :
    Equations
    Instances For
      theorem Chapter7.Series.eval_mk' {m : } (a : { n : // n m }) {n : } (h : n m) :
      (mk' a).seq n = a n, h
      @[reducible, inline]

      Визначення 7.2.2 (Convergence of series)

      Equations
      Instances For
        theorem Chapter7.Series.partial_succ (s : Series) {N : } (h : N s.m - 1) :
        s.partial (N + 1) = s.partial N + s.seq (N + 1)
        @[reducible, inline]
        Equations
        Instances For
          @[reducible, inline]
          Equations
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              noncomputable abbrev Chapter7.Series.sum (s : Series) :
              Equations
              Instances For
                theorem Chapter7.Series.sum_of_converges {s : Series} {L : } (h : s.convergesTo L) :
                s.sum = L

                Ремарка 7.2.3

                @[reducible, inline]

                Приклад 7.2.4

                Equations
                Instances For
                  @[reducible, inline]
                  Equations
                  Instances For
                    theorem Chapter7.Series.example_7_2_4'a {N : } (hN : N 1) :
                    example_7_2_4'.partial N = 2 ^ (N + 1) - 2
                    theorem Chapter7.Series.converges_iff_tail_decay (s : Series) :
                    s.converges ε > 0, Ns.m, pN, qN, |nFinset.Icc p q, s.seq n| ε

                    Твердження 7.2.5 / Вправа 7.2.2

                    Наслідок 7.2.6 (Zero test) / Вправа 7.2.3

                    theorem Chapter7.Series.example_7_2_7 :
                    { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => 1) n.toNat else 0, vanish := }.diverges

                    Приклад 7.2.7

                    theorem Chapter7.Series.example_7_2_7' :
                    { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => (-1) ^ n) n.toNat else 0, vanish := }.diverges
                    @[reducible, inline]

                    Визначення 7.2.8 (Absolute convergence)

                    Equations
                    Instances For
                      @[reducible, inline]
                      Equations
                      Instances For
                        @[reducible, inline]
                        Equations
                        Instances For

                          Твердження 7.2.9 (Absolute convergence test) / Example 7.2.4

                          theorem Chapter7.Series.converges_of_alternating {m : } {a : { n : // n m }} (ha : ∀ (n : { n : // n m }), a n 0) (ha' : Antitone a) :
                          (mk' fun (n : { n : // n m }) => (-1) ^ n * a n).converges Filter.Tendsto a Filter.atTop (nhds 0)

                          Твердження 7.2.12 (Alternating series test)

                          @[reducible, inline]

                          Приклад 7.2.13

                          Equations
                          Instances For
                            Equations
                            theorem Chapter7.Series.add {s t : Series} (hs : s.converges) (ht : t.converges) :
                            (s + t).converges (s + t).sum = s.sum + t.sum

                            Твердження 7.2.14 (a) (Series laws) / Вправа 7.2.5

                            Equations
                            theorem Chapter7.Series.smul {c : } {s : Series} (hs : s.converges) :
                            (c s).converges (c s).sum = c * s.sum

                            Твердження 7.2.14 (b) (Series laws) / Вправа 7.2.5

                            @[reducible, inline]
                            abbrev Chapter7.Series.from (s : Series) (m₁ : ) :
                            Equations
                            Instances For
                              theorem Chapter7.Series.converges_from (s : Series) (k : ) :
                              s.converges (s.from (s.m + k)).converges

                              Твердження 7.2.14 (c) (Series laws) / Вправа 7.2.5

                              theorem Chapter7.Series.sum_from {s : Series} (k : ) (h : s.converges) :
                              s.sum = nFinset.Ico s.m (s.m + k), s.seq n + (s.from (s.m + k)).sum
                              theorem Chapter7.Series.shift {s : Series} {x : } (h : s.convergesTo x) (L : ) :
                              (mk' fun (n : { n : // n s.m + L }) => s.seq (n - L)).convergesTo x

                              Твердження 7.2.14 (d) (Series laws) / Вправа 7.2.5

                              theorem Chapter7.Series.telescope {a : } (ha : Filter.Tendsto a Filter.atTop (nhds 0)) :
                              { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => a (n + 1) - a n) n.toNat else 0, vanish := }.convergesTo (a 0)

                              Лема 7.2.15 (telescoping series) / Вправа 7.2.6