Documentation

Analysis.Section_6_5

Аналіз I, Глава 6.5 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter6.Sequence.lim_of_const (c : ) :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => c) n.toNat else 0, vanish := }.tendsTo c
Equations
@[simp]
theorem Chapter6.Sequence.pow_one (a : Sequence) :
a ^ 1 = a
theorem Chapter6.Sequence.pow_succ (a : Sequence) (k : ) :
a ^ (k + 1) = a ^ k * a
theorem Chapter6.Sequence.lim_of_power_decay {k : } :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => 1 / (n + 1) ^ (1 / (k + 1))) n.toNat else 0, vanish := }.tendsTo 0

Наслідок 6.5.1

theorem Chapter6.Sequence.lim_of_geometric {x : } (hx : |x| < 1) :
lim { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := } = 0

Лема 6.5.2 / Вправа 6.5.2

theorem Chapter6.Sequence.lim_of_geometric' {x : } (hx : x = 1) :
lim { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := } = 1

Лема 6.5.2 / Вправа 6.5.2

theorem Chapter6.Sequence.lim_of_geometric'' {x : } (hx : x = -1 |x| > 1) :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ n) n.toNat else 0, vanish := }.divergent

Лема 6.5.2 / Вправа 6.5.2

theorem Chapter6.Sequence.lim_of_roots {x : } (hx : x > 0) :
lim { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => x ^ (1 / (n + 1))) n.toNat else 0, vanish := } = 1

Лема 6.5.3 / Вправа 6.5.3

theorem Chapter6.Sequence.lim_of_rat_power_decay {q : } (hq : q > 0) :
lim { m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => 1 / (n + 1) ^ q) n.toNat else 0, vanish := } = 0

Вправа 6.5.1

theorem Chapter6.Sequence.lim_of_rat_power_growth {q : } (hq : q > 0) :
{ m := 0, seq := fun (n : ) => if n 0 then (fun (n : ) => (n + 1) ^ q) n.toNat else 0, vanish := }.divergent

Вправа 6.5.1