Documentation

Analysis.Section_6_4

Аналіз I, Глава 6.4 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
abbrev Real.adherent (ε : ) (a : Chapter6.Sequence) (x : ) :
Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      Equations
      Instances For
        theorem Chapter6.Sequence.limit_point_def (a : Sequence) (x : ) :
        a.limit_point x ε > 0, Na.m, nN, |a.seq n - x| ε
        @[reducible, inline]
        noncomputable abbrev Chapter6.Example_6_4_3 :
        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev Chapter6.Example_6_4_4 :
          Equations
          Instances For

            Твердження 6.4.5 / Вправа 6.4.1

            @[reducible, inline]
            noncomputable abbrev Chapter6.Sequence.upperseq (a : Sequence) :

            A technical issue uncovered by the formalization: the upper and lower sequences of a real sequence take values in the extended reals rather than the reals, so the definitions need to be adjusted accordingly.

            Equations
            Instances For
              @[reducible, inline]
              noncomputable abbrev Chapter6.Sequence.limsup (a : Sequence) :
              Equations
              Instances For
                @[reducible, inline]
                noncomputable abbrev Chapter6.Sequence.lowerseq (a : Sequence) :
                Equations
                Instances For
                  @[reducible, inline]
                  noncomputable abbrev Chapter6.Sequence.liminf (a : Sequence) :
                  Equations
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev Chapter6.Example_6_4_7 :
                    Equations
                    Instances For
                      @[reducible, inline]
                      noncomputable abbrev Chapter6.Example_6_4_8 :
                      Equations
                      Instances For
                        @[reducible, inline]
                        noncomputable abbrev Chapter6.Example_6_4_9 :
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[reducible, inline]
                          noncomputable abbrev Chapter6.Example_6_4_10 :
                          Equations
                          Instances For
                            theorem Chapter6.Sequence.gt_limsup_bounds {a : Sequence} {x : EReal} (h : x > a.limsup) :
                            Na.m, nN, (a.seq n) < x

                            Твердження 6.4.12(a)

                            theorem Chapter6.Sequence.lt_liminf_bounds {a : Sequence} {y : EReal} (h : y < a.liminf) :
                            Na.m, nN, (a.seq n) > y

                            Твердження 6.4.12(a)

                            theorem Chapter6.Sequence.lt_limsup_bounds {a : Sequence} {x : EReal} (h : x < a.limsup) {N : } (hN : N a.m) :
                            nN, (a.seq n) > x

                            Твердження 6.4.12(b)

                            theorem Chapter6.Sequence.gt_liminf_bounds {a : Sequence} {x : EReal} (h : x > a.liminf) {N : } (hN : N a.m) :
                            nN, (a.seq n) < x

                            Твердження 6.4.12(b)

                            Твердження 6.4.12(c) / Вправа 6.4.3

                            Твердження 6.4.12(c) / Вправа 6.4.3

                            Твердження 6.4.12(c) / Вправа 6.4.3

                            Твердження 6.4.12(d) / Вправа 6.4.3

                            theorem Chapter6.Sequence.limit_point_of_limsup {a : Sequence} {L_plus : } (h : a.limsup = L_plus) :
                            a.limit_point L_plus

                            Твердження 6.4.12(e) / Вправа 6.4.3

                            theorem Chapter6.Sequence.limit_point_of_liminf {a : Sequence} {L_minus : } (h : a.liminf = L_minus) :
                            a.limit_point L_minus

                            Твердження 6.4.12(e) / Вправа 6.4.3

                            Твердження 6.4.12(f) / Вправа 6.4.3

                            theorem Chapter6.Sequence.sup_mono {a b : Sequence} (hm : a.m = b.m) (hab : na.m, a.seq n b.seq n) :
                            a.sup b.sup

                            Лема 6.4.13 (Comparison principle) / Вправа 6.4.4

                            theorem Chapter6.Sequence.inf_mono {a b : Sequence} (hm : a.m = b.m) (hab : na.m, a.seq n b.seq n) :
                            a.inf b.inf

                            Лема 6.4.13 (Comparison principle) / Вправа 6.4.4

                            theorem Chapter6.Sequence.limsup_mono {a b : Sequence} (hm : a.m = b.m) (hab : na.m, a.seq n b.seq n) :

                            Лема 6.4.13 (Comparison principle) / Вправа 6.4.4

                            theorem Chapter6.Sequence.liminf_mono {a b : Sequence} (hm : a.m = b.m) (hab : na.m, a.seq n b.seq n) :

                            Лема 6.4.13 (Comparison principle) / Вправа 6.4.4

                            theorem Chapter6.Sequence.lim_of_between {a b c : Sequence} {L : } (hm : b.m = a.m c.m = a.m) (hab : na.m, a.seq n b.seq n b.seq n c.seq n) (ha : a.tendsTo L) (hb : b.tendsTo L) :

                            Наслідок 6.4.14 (Squeeze test) / Вправа 6.4.5

                            @[reducible, inline]
                            Equations
                            Instances For

                              Наслідок 6.4.17 (Zero test for sequences) / Вправа 6.4.7

                              theorem Chapter6.Sequence.finite_limsup_liminf_of_bounded {a : Sequence} (hbound : a.isBounded) :
                              (∃ (L_plus : ), a.limsup = L_plus) ∃ (L_minus : ), a.liminf = L_minus

                              This helper lemma, implicit in the textbook proofs of Theorem 6.4.18 and Theorem 6.6.8, is made explicit here.

                              Теорема 6.4.18 (Completeness of the reals)

                              theorem Chapter6.Sequence.sup_not_strict_mono :
                              ∃ (a : ) (b : ), (∀ (n : ), a n < b n) { m := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.sup { m := 0, seq := fun (n : ) => if n 0 then b n.toNat else 0, vanish := }.sup

                              Вправа 6.4.6

                              @[reducible, inline]

                              This definition is needed for Exercises 6.4.8 and 6.4.9.

                              Equations
                              Instances For

                                Вправа 6.4.9

                                theorem Chapter6.Sequence.limit_points_of_limit_points {a b : Sequence} {c : } (hab : nb.m, a.limit_point (b.seq n)) (hbc : b.limit_point c) :

                                Вправа 6.4.10