Аналіз I, Глава 11.3 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Визначення 11.3.1 (Majorization of functions)
Equations
- Chapter11.MajorizesOn g f (Chapter11.BoundedInterval.Ioo a b) = ∀ x ∈ Set.Ioo a b, f x ≤ g x
- Chapter11.MajorizesOn g f (Chapter11.BoundedInterval.Icc a b) = ∀ x ∈ Set.Icc a b, f x ≤ g x
- Chapter11.MajorizesOn g f (Chapter11.BoundedInterval.Ioc a b) = ∀ x ∈ Set.Ioc a b, f x ≤ g x
- Chapter11.MajorizesOn g f (Chapter11.BoundedInterval.Ico a b) = ∀ x ∈ Set.Ico a b, f x ≤ g x
Instances For
Equations
- Chapter11.MinorizesOn g f (Chapter11.BoundedInterval.Ioo a b) = ∀ x ∈ Set.Ioo a b, g x ≤ f x
- Chapter11.MinorizesOn g f (Chapter11.BoundedInterval.Icc a b) = ∀ x ∈ Set.Icc a b, g x ≤ f x
- Chapter11.MinorizesOn g f (Chapter11.BoundedInterval.Ioc a b) = ∀ x ∈ Set.Ioc a b, g x ≤ f x
- Chapter11.MinorizesOn g f (Chapter11.BoundedInterval.Ico a b) = ∀ x ∈ Set.Ico a b, g x ≤ f x
Instances For
Визначення 11.3.2 (Uppper and lower Riemann integrals )
Equations
- Chapter11.upper_integral f I = sInf ((fun (g : ℝ → ℝ) => Chapter11.PiecewiseConstantOn.integ g I) '' {g : ℝ → ℝ | Chapter11.MajorizesOn g f I ∧ Chapter11.PiecewiseConstantOn g I})
Instances For
Equations
- Chapter11.lower_integral f I = sSup ((fun (g : ℝ → ℝ) => Chapter11.PiecewiseConstantOn.integ g I) '' {g : ℝ → ℝ | Chapter11.MinorizesOn g f I ∧ Chapter11.PiecewiseConstantOn g I})
Instances For
Лема 11.3.3, augmented with some additional useful facts
Визначення 11.3.4 (Riemann integral) As we permit junk values, the simplest definition for the Riemann integral is the upper integral.
Equations
- Chapter11.integ f I = Chapter11.upper_integral f I
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Лема 11.3.7 / Вправа 11.3.3
Ремарка 11.3.8
Визначення 11.3.9 (Riemann sums). The restriction to positive length J is not needed thanks to various junk value conventions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Лема 11.3.11 / Вправа 11.3.4
Твердження 11.3.12 / Вправа 11.3.5
Вправа 11.3.1
Вправа 11.3.1
Вправа 11.3.2