Documentation

Analysis.Section_11_3

Аналіз I, Глава 11.3 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

@[reducible, inline]

Визначення 11.3.1 (Majorization of functions)

Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev Chapter11.upper_integral (f : ) (I : BoundedInterval) :

      Визначення 11.3.2 (Uppper and lower Riemann integrals )

      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev Chapter11.lower_integral (f : ) (I : BoundedInterval) :
        Equations
        Instances For

          Лема 11.3.3, augmented with some additional useful facts

          @[reducible, inline]
          noncomputable abbrev Chapter11.integ (f : ) (I : BoundedInterval) :

          Визначення 11.3.4 (Riemann integral) As we permit junk values, the simplest definition for the Riemann integral is the upper integral.

          Equations
          Instances For
            @[reducible, inline]
            noncomputable abbrev Chapter11.integrable (f : ) (I : BoundedInterval) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Лема 11.3.7 / Вправа 11.3.3

              theorem Chapter11.integ_on_subsingleton {f : } {I : BoundedInterval} (hI : I.length = 0) :
              integrable f I integ f I = 0

              Ремарка 11.3.8

              @[reducible, inline]
              noncomputable abbrev Chapter11.upper_riemann_sum (f : ) {I : BoundedInterval} (P : Partition I) :

              Визначення 11.3.9 (Riemann sums). The restriction to positive length J is not needed thanks to various junk value conventions.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[reducible, inline]
                noncomputable abbrev Chapter11.lower_riemann_sum (f : ) {I : BoundedInterval} (P : Partition I) :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem Chapter11.upper_riemann_sum_le {f g : } {I : BoundedInterval} (P : Partition I) (hf : Chapter9.BddOn f (match I with | BoundedInterval.Ioo a b => Set.Ioo a b | BoundedInterval.Icc a b => Set.Icc a b | BoundedInterval.Ioc a b => Set.Ioc a b | BoundedInterval.Ico a b => Set.Ico a b)) (hgf : MajorizesOn g f I) (hg : PiecewiseConstantOn g I) :

                  Лема 11.3.11 / Вправа 11.3.4

                  theorem Chapter11.lower_riemann_sum_ge {f h : } {I : BoundedInterval} (P : Partition I) (hf : Chapter9.BddOn f (match I with | BoundedInterval.Ioo a b => Set.Ioo a b | BoundedInterval.Icc a b => Set.Icc a b | BoundedInterval.Ioc a b => Set.Ioc a b | BoundedInterval.Ico a b => Set.Ico a b)) (hfh : MinorizesOn h f I) (hg : PiecewiseConstantOn h I) :

                  Твердження 11.3.12 / Вправа 11.3.5

                  theorem Chapter11.MajorizesOn.trans {f g h : } {I : BoundedInterval} (hfg : MajorizesOn f g I) (hgh : MajorizesOn g h I) :

                  Вправа 11.3.1

                  theorem Chapter11.MajorizesOn.anti_symm {f g : } {I : BoundedInterval} (x : ) :
                  (x match I with | BoundedInterval.Ioo a b => Set.Ioo a b | BoundedInterval.Icc a b => Set.Icc a b | BoundedInterval.Ioc a b => Set.Ioc a b | BoundedInterval.Ico a b => Set.Ico a b) → (f x = g x MajorizesOn f g I MajorizesOn g f I)

                  Вправа 11.3.1

                  def Chapter11.MajorizesOn.of_add :
                  Decidable (∀ (f g h : ) (I : BoundedInterval), MajorizesOn f g IMajorizesOn (f + h) (g + h) I)

                  Вправа 11.3.2

                  Equations
                  Instances For
                    def Chapter11.MajorizesOn.of_mul :
                    Decidable (∀ (f g h : ) (I : BoundedInterval), MajorizesOn f g IMajorizesOn (f * h) (g * h) I)
                    Equations
                    Instances For
                      def Chapter11.MajorizesOn.of_smul :
                      Decidable (∀ (f g : ) (c : ) (I : BoundedInterval), MajorizesOn f g IMajorizesOn (c f) (c g) I)
                      Equations
                      Instances For