Documentation

Analysis.Section_11_1

Аналіз I, Глава 11.1 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

Instances For

    There is a technical issue in that this coercion is not injective: the empty set is represented by multiple bounded intervals. This causes some of the statements in this section to be a little uglier than necessary.

    Equations
    • One or more equations did not get rendered due to their size.

    This is to make Finsets of BoundedIntervals work properly

    Equations
    @[simp]
    theorem Chapter11.BoundedInterval.set_Ioo (a b : ) :
    (match Ioo a b with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = Set.Ioo a b
    @[simp]
    theorem Chapter11.BoundedInterval.set_Icc (a b : ) :
    (match Icc a b with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = Set.Icc a b
    @[simp]
    theorem Chapter11.BoundedInterval.set_Ioc (a b : ) :
    (match Ioc a b with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = Set.Ioc a b
    @[simp]
    theorem Chapter11.BoundedInterval.set_Ico (a b : ) :
    (match Ico a b with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = Set.Ico a b
    theorem Chapter11.BoundedInterval.ordConnected_iff (X : Set ) :
    Bornology.IsBounded X X.OrdConnected ∃ (I : BoundedInterval), X = match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b

    Лема 11.1.4 / Вправа 11.1.1

    theorem Chapter11.BoundedInterval.inter (I J : BoundedInterval) :
    ∃ (K : BoundedInterval), ((match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) match J with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = match K with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b

    Наслідок 11.1.6 / Вправа 11.1.2

    @[simp]
    theorem Chapter11.BoundedInterval.inter_eq (I J : BoundedInterval) :
    (match I J with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = (match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) match J with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b
    Equations
    • One or more equations did not get rendered due to their size.
    theorem Chapter11.BoundedInterval.mem_iff (I : BoundedInterval) (x : ) :
    x I x match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b
    theorem Chapter11.BoundedInterval.subset_iff (I J : BoundedInterval) :
    I J (match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) match J with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b
    @[simp]
    @[reducible, inline]
    Equations
    Instances For

      Using ||ₗ subscript here to not override ||

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Chapter11.BoundedInterval.length_of_empty {I : BoundedInterval} (hI : (match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) = ) :
        I.length = 0
        theorem Chapter11.BoundedInterval.length_of_subsingleton {I : BoundedInterval} :
        Subsingleton (match I with | Ioo a b => Set.Ioo a b | Icc a b => Set.Icc a b | Ioc a b => Set.Ioc a b | Ico a b => Set.Ico a b) I.length = 0
        @[reducible, inline]
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem Chapter11.BoundedInterval.join_Icc_Ioc {a b c : } (hab : a b) (hbc : b c) :
          (Icc a c).joins (Icc a b) (Ioc b c)
          theorem Chapter11.BoundedInterval.join_Icc_Ioo {a b c : } (hab : a b) (hbc : b < c) :
          (Ico a c).joins (Icc a b) (Ioo b c)
          theorem Chapter11.BoundedInterval.join_Ioc_Ioc {a b c : } (hab : a b) (hbc : b c) :
          (Ioc a c).joins (Ioc a b) (Ioc b c)
          theorem Chapter11.BoundedInterval.join_Ioc_Ioo {a b c : } (hab : a b) (hbc : b < c) :
          (Ioo a c).joins (Ioc a b) (Ioo b c)
          theorem Chapter11.BoundedInterval.join_Ico_Icc {a b c : } (hab : a b) (hbc : b c) :
          (Icc a c).joins (Ico a b) (Icc b c)
          theorem Chapter11.BoundedInterval.join_Ico_Ico {a b c : } (hab : a b) (hbc : b c) :
          (Ico a c).joins (Ico a b) (Ico b c)
          theorem Chapter11.BoundedInterval.join_Ioo_Icc {a b c : } (hab : a < b) (hbc : b c) :
          (Ioc a c).joins (Ioo a b) (Icc b c)
          theorem Chapter11.BoundedInterval.join_Ioo_Ico {a b c : } (hab : a < b) (hbc : b c) :
          (Ioo a c).joins (Ioo a b) (Ico b c)
          Instances For
            theorem Chapter11.Partition.ext {I : BoundedInterval} {x y : Partition I} (intervals : x.intervals = y.intervals) :
            x = y
            Equations
            @[reducible, inline]
            noncomputable abbrev Chapter11.Partition.join {I J K : BoundedInterval} (P : Partition I) (Q : Partition J) (h : K.joins I J) :
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                theorem Chapter11.Partition.exist_right {I : BoundedInterval} (hI : I.a < I.b) (hI' : I.bI) {P : Partition I} :

                Вправа 11.1.3. The exercise only claims c ≤ b, but the stronger claim c < b is true and useful.

                Теорема 11.1.13 (Length is finitely additive). Due to the excessive case analysis, simp only is used in place of simp in some places to speed up elaboration.

                Визначення 11.1.14 (Finer and coarser partitions)

                Equations
                Equations
                noncomputable instance Chapter11.Partition.instMax (I : BoundedInterval) :

                Визначення 11.1.16 (Common refinement)

                Equations
                • One or more equations did not get rendered due to their size.
                theorem Chapter11.BoundedInterval.le_max {I : BoundedInterval} (P P' : Partition I) :
                P PP' P' PP'

                Лема 11.1.8 / Вправа 11.1.4

                theorem Chapter11.BoundedInterval.max_le_iff (I : BoundedInterval) {P P' P'' : Partition I} {hP : P P''} {hP' : P' P''} :
                PP' P''

                Not from textbook: the reverse inclusion