Аналіз I, Глава 9.8 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Review of Mathlib monotonicity concepts
Визначення 9.8.1
theorem
Chapter9.MonotoneOn.exist_inverse
{a b : ℝ}
(h : a < b)
(f : ℝ → ℝ)
(hcont : ContinuousOn f (Set.Icc a b))
(hmono : StrictMonoOn f (Set.Icc a b))
:
Твердження 9.8.3 / Вправа 9.8.4
theorem
Chapter9.mono_of_continuous_inj
{a b : ℝ}
(h : a < b)
{f : ℝ → ℝ}
(hf : ContinuousOn f (Set.Icc a b))
(hinj : Function.Injective fun (x : ↑(Set.Icc a b)) => f ↑x)
:
Вправа 9.8.3
def
Chapter9.MonotoneOn.exist_inverse_without_continuity
{a b : ℝ}
(h : a < b)
(f : ℝ → ℝ)
(hmono : StrictMonoOn f (Set.Icc a b))
:
Вправа 9.8.4
Equations
- Chapter9.MonotoneOn.exist_inverse_without_continuity h f hmono = sorry
Instances For
def
Chapter9.MonotoneOn.exist_inverse_without_strictmono
{a b : ℝ}
(h : a < b)
(f : ℝ → ℝ)
(hcont : ContinuousOn f (Set.Icc a b))
(hmono : MonotoneOn f (Set.Icc a b))
:
Вправа 9.8.4
Equations
- Chapter9.MonotoneOn.exist_inverse_without_strictmono h f hcont hmono = sorry
Instances For
@[reducible, inline]
An equivalence between the natural numbers and the rationals.
Equations
Instances For
@[reducible, inline]