Documentation

Analysis.Section_9_8

Аналіз I, Глава 9.8 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter9.MonotoneOn.iff {X : Set } (f : ) :
MonotoneOn f X xX, yX, y > xf y f x

Визначення 9.8.1

theorem Chapter9.StrictMono.iff {X : Set } (f : ) :
StrictMonoOn f X xX, yX, y > xf y > f x
theorem Chapter9.AntitoneOn.iff {X : Set } (f : ) :
AntitoneOn f X xX, yX, y > xf y f x
theorem Chapter9.StrictAntitone.iff {X : Set } (f : ) :
StrictAntiOn f X xX, yX, y > xf y < f x
theorem Chapter9.MonotoneOn.exist_inverse {a b : } (h : a < b) (f : ) (hcont : ContinuousOn f (Set.Icc a b)) (hmono : StrictMonoOn f (Set.Icc a b)) :
f '' Set.Icc a b = Set.Icc (f a) (f b) ∃ (finv : ), ContinuousOn finv (Set.Icc (f a) (f b)) StrictMonoOn finv (Set.Icc (f a) (f b)) finv '' Set.Icc (f a) (f b) = Set.Icc a b (∀ xSet.Icc a b, finv (f x) = x) ySet.Icc (f a) (f b), f (finv y) = y

Твердження 9.8.3 / Вправа 9.8.4

theorem Chapter9.IsMaxOn.of_monotone_on_compact {a b : } (h : a < b) {f : } (hf : MonotoneOn f (Set.Icc a b)) :
xmaxSet.Icc a b, IsMaxOn f (Set.Icc a b) xmax

Вправа 9.8.1

theorem Chapter9.IsMaxOn.of_strictmono_on_compact {a b : } (h : a < b) {f : } (hf : StrictMonoOn f (Set.Icc a b)) :
xmaxSet.Icc a b, IsMaxOn f (Set.Icc a b) xmax
theorem Chapter9.IsMaxOn.of_antitone_on_compact {a b : } (h : a < b) {f : } (hf : AntitoneOn f (Set.Icc a b)) :
xmaxSet.Icc a b, IsMaxOn f (Set.Icc a b) xmax
theorem Chapter9.IsMaxOn.of_strictantitone_on_compact {a b : } (h : a < b) {f : } (hf : StrictAntiOn f (Set.Icc a b)) :
xmaxSet.Icc a b, IsMaxOn f (Set.Icc a b) xmax
theorem Chapter9.no_strictmono_intermediate_value :
∃ (a : ) (b : ) (_ : a < b) (f : ) (_ : StrictMonoOn f (Set.Icc a b)), ¬∃ (y : ), y Set.Icc (f a) (f b) y Set.Icc (f a) (f b)

Вправа 9.8.2

theorem Chapter9.no_monotone_intermediate_value :
∃ (a : ) (b : ) (_ : a < b) (f : ) (_ : MonotoneOn f (Set.Icc a b)), ¬∃ (y : ), y Set.Icc (f a) (f b) y Set.Icc (f a) (f b)
theorem Chapter9.no_strictanti_intermediate_value :
∃ (a : ) (b : ) (_ : a < b) (f : ) (_ : StrictAntiOn f (Set.Icc a b)), ¬∃ (y : ), y Set.Icc (f a) (f b) y Set.Icc (f a) (f b)
theorem Chapter9.no_antitone_intermediate_value :
∃ (a : ) (b : ) (_ : a < b) (f : ) (_ : AntitoneOn f (Set.Icc a b)), ¬∃ (y : ), y Set.Icc (f a) (f b) y Set.Icc (f a) (f b)
theorem Chapter9.mono_of_continuous_inj {a b : } (h : a < b) {f : } (hf : ContinuousOn f (Set.Icc a b)) (hinj : Function.Injective fun (x : (Set.Icc a b)) => f x) :

Вправа 9.8.3

def Chapter9.MonotoneOn.exist_inverse_without_continuity {a b : } (h : a < b) (f : ) (hmono : StrictMonoOn f (Set.Icc a b)) :
Decidable (f '' Set.Icc a b = Set.Icc (f a) (f b) ∃ (finv : ), ContinuousOn finv (Set.Icc (f a) (f b)) StrictMonoOn finv (Set.Icc (f a) (f b)) finv '' Set.Icc (f a) (f b) = Set.Icc a b (∀ xSet.Icc a b, finv (f x) = x) ySet.Icc (f a) (f b), f (finv y) = y)

Вправа 9.8.4

Equations
Instances For
    def Chapter9.MonotoneOn.exist_inverse_without_strictmono {a b : } (h : a < b) (f : ) (hcont : ContinuousOn f (Set.Icc a b)) (hmono : MonotoneOn f (Set.Icc a b)) :
    Decidable (f '' Set.Icc a b = Set.Icc (f a) (f b) ∃ (finv : ), ContinuousOn finv (Set.Icc (f a) (f b)) StrictMonoOn finv (Set.Icc (f a) (f b)) finv '' Set.Icc (f a) (f b) = Set.Icc a b (∀ xSet.Icc a b, finv (f x) = x) ySet.Icc (f a) (f b), f (finv y) = y)

    Вправа 9.8.4

    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev Chapter9.q_9_8_5 :

      An equivalence between the natural numbers and the rationals.

      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev Chapter9.g_9_8_5 :
        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev Chapter9.f_9_8_5 :
          Equations
          Instances For