Documentation

Analysis.Section_9_2

Аналіз I, Глава 9.2 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
noncomputable abbrev Chapter9.function_example :
Equations
Instances For
    theorem Chapter9.add_func_eval (f g : ) (x : ) :
    (f + g) x = f x + g x

    Визначення 9.2.1 (Arithmetic operations on functions)

    theorem Chapter9.sub_func_eval (f g : ) (x : ) :
    (f - g) x = f x - g x
    theorem Chapter9.max_func_eval (f g : ) (x : ) :
    max f g x = max (f x) (g x)
    theorem Chapter9.min_func_eval (f g : ) (x : ) :
    min f g x = min (f x) (g x)
    theorem Chapter9.mul_func_eval (f g : ) (x : ) :
    (f * g) x = f x * g x
    theorem Chapter9.div_func_eval (f g : ) (x : ) :
    (f / g) x = f x / g x
    theorem Chapter9.smul_func_eval (c : ) (f : ) (x : ) :
    (c f) x = c * f x
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      Equations
      Instances For
        def Chapter9.Exercise_9_2_1a :
        Decidable (∀ (f g h : ), (f + g) h = f h + g h)
        Equations
        Instances For
          def Chapter9.Exercise_9_2_1b :
          Decidable (∀ (f g h : ), f (g + h) = f g + f h)
          Equations
          Instances For
            def Chapter9.Exercise_9_2_1c :
            Decidable (∀ (f g h : ), (f + g) * h = f * h + g * h)
            Equations
            Instances For
              def Chapter9.Exercise_9_2_1d :
              Decidable (∀ (f g h : ), f * (g + h) = f * g + f * h)
              Equations
              Instances For