Documentation

Analysis.Section_5_2

Аналіз I, Розділ 5.2: Еквівалентні послідовності Коші #

Я (пр.перекл. Терренс Тао) намагався зробити переклад якомога точнішим перефразуванням оригінального тексту. Коли є вибір між більш ідіоматичним рішенням Lean та більш точним перекладом, я зазвичай обирав останній. Зокрема, будуть місця, де код Lean можна було б "підбуцнути", щоб зробити його більш елегантним та ідіоматичним, але я свідомо уникав цього вибору.

Основні конструкції та результати цього розділу:

Підказки від попередніх користувачів #

Користувачі супровідного матеріалу, які виконали вправи в цьому розділі, можуть надсилати свої поради майбутнім користувачам цього розділу як PRи.

@[reducible, inline]
abbrev Rat.CloseSeq (ε : ) (a b : Chapter5.Sequence) :
Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      theorem Chapter5.Rat.closeSeq_def (ε : ) (a b : Sequence) :
      ε.CloseSeq a b na.n₀, n b.n₀ε.Close (a.seq n) (b.seq n)

      Визначення 5.2.1 ($ε$-близькі послідовності)

      theorem Chapter5.Rat.eventuallyClose_def (ε : ) (a b : Sequence) :
      ε.EventuallyClose a b ∃ (N : ), ε.CloseSeq (a.from N) (b.from N)

      Визначення 5.2.3 (З часом ε-близькі послідовності)

      theorem Chapter5.Rat.eventuallyClose_iff (ε : ) (a b : ) :
      ε.EventuallyClose a b ∃ (N : ), nN, |a n - b n| ε

      Визначення 5.2.3 (З часом ε-близькі послідовності)

      @[reducible, inline]
      abbrev Chapter5.Sequence.Equiv (a b : ) :

      Визначення 5.2.6 (Еквівалентні послідовності)

      Equations
      Instances For
        theorem Chapter5.Sequence.equiv_def (a b : ) :
        Equiv a b ε > 0, ε.EventuallyClose a b

        Визначення 5.2.6 (Еквівалентні послідовності)

        theorem Chapter5.Sequence.equiv_iff (a b : ) :
        Equiv a b ε > 0, ∃ (N : ), nN, |a n - b n| ε

        Визначення 5.2.6 (Еквівалентні послідовності)

        theorem Chapter5.Sequence.equiv_example :
        Equiv (fun (n : ) => 1 + 10 ^ (-n - 1)) fun (n : ) => 1 - 10 ^ (-n - 1)

        Твердження 5.2.8

        theorem Chapter5.Sequence.isCauchy_of_equiv {a b : } (hab : Equiv a b) :
        (↑a).IsCauchy (↑b).IsCauchy

        Вправа 5.2.1

        theorem Chapter5.Sequence.isBounded_of_eventuallyClose {ε : } {a b : } (hab : ε.EventuallyClose a b) :
        (↑a).IsBounded (↑b).IsBounded

        Вправа 5.2.2