Documentation

Analysis.Section_5_2

Аналіз I, Глава 5.2 #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
abbrev Rat.close_seq (ε : ) (a b : Chapter5.Sequence) :
Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      theorem Chapter5.Rat.close_seq_def (ε : ) (a b : Sequence) :
      ε.close_seq a b na.n₀, n b.n₀ε.close (a.seq n) (b.seq n)

      Визначення 5.2.1 ($ε$-close sequences)

      theorem Chapter5.Rat.eventually_close_def (ε : ) (a b : Sequence) :
      ε.eventually_close a b ∃ (N : ), ε.close_seq (a.from N) (b.from N)

      Визначення 5.2.3 (Eventually ε-close sequences)

      theorem Chapter5.Rat.eventually_close_iff (ε : ) (a b : ) :
      ε.eventually_close { n₀ := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := } { n₀ := 0, seq := fun (n : ) => if n 0 then b n.toNat else 0, vanish := } ∃ (N : ), nN, |a n - b n| ε

      Визначення 5.2.3 (Eventually ε-close sequences)

      @[reducible, inline]
      abbrev Chapter5.Sequence.equiv (a b : ) :

      Визначення 5.2.6 (Equivalent sequences)

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Chapter5.Sequence.equiv_def (a b : ) :
        equiv a b ε > 0, ε.eventually_close { n₀ := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := } { n₀ := 0, seq := fun (n : ) => if n 0 then b n.toNat else 0, vanish := }

        Визначення 5.2.6 (Equivalent sequences)

        theorem Chapter5.Sequence.equiv_iff (a b : ) :
        equiv a b ε > 0, ∃ (N : ), nN, |a n - b n| ε

        Визначення 5.2.6 (Equivalent sequences)

        theorem Chapter5.Sequence.equiv_example :
        equiv (fun (n : ) => 1 + 10 ^ (-n - 1)) fun (n : ) => 1 - 10 ^ (-n - 1)

        Твердження 5.2.8

        theorem Chapter5.Sequence.equiv_of_cauchy {a b : } (hab : equiv a b) :
        { n₀ := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.isCauchy { n₀ := 0, seq := fun (n : ) => if n 0 then b n.toNat else 0, vanish := }.isCauchy

        Вправа 5.2.1

        theorem Chapter5.Sequence.close_of_bounded {ε : } {a b : } (hab : ε.eventually_close { n₀ := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := } { n₀ := 0, seq := fun (n : ) => if n 0 then b n.toNat else 0, vanish := }) :
        { n₀ := 0, seq := fun (n : ) => if n 0 then a n.toNat else 0, vanish := }.isBounded { n₀ := 0, seq := fun (n : ) => if n 0 then b n.toNat else 0, vanish := }.isBounded

        Вправа 5.2.2