Documentation

Analysis.Section_4_4

Аналіз I, Розділ 4.4: Прогалини у раціональних числах #

Я (пр.перекл. Терренс Тао) намагався зробити переклад якомога точнішим перефразуванням оригінального тексту. Коли є вибір між більш ідіоматичним рішенням Lean та більш точним перекладом, я зазвичай обирав останній. Зокрема, будуть місця, де код Lean можна було б "підбуцнути", щоб зробити його більш елегантним та ідіоматичним, але я свідомо уникав цього вибору.

Основні побудови та результати цього розділу:

Багато результатів тут можна встановити швидше, більше спираючись на API Mathlib; можна поставити собі вправу зробити це.

Підказки від попередніх користувачів #

Користувачі супровідного матеріалу, які виконали вправи в цьому розділі, можуть надсилати свої поради майбутнім користувачам цього розділу як PRи.

theorem Rat.between_int (x : ) :
∃! n : , n x x < n + 1

Твердження 4.4.1 (Переплетення цілих чисел раціональними) / Вправа 4.4.1

theorem Nat.exists_gt (x : ) :
∃ (n : ), n > x
theorem Rat.exists_between_rat {x y : } (h : x < y) :
∃ (z : ), x < z z < y

Твердження 4.4.3 (Переплетення раціональних чисел)

theorem Nat.no_infinite_descent :
¬∃ (a : ), ∀ (n : ), a (n + 1) < a n

Вправа 4.4.2 (a)

def Int.infinite_descent :
Decidable (∃ (a : ), ∀ (n : ), a (n + 1) < a n)

Вправа 4.4.2 (b)

Equations
Instances For
    def Rat.pos_infinite_descent :
    Decidable (∃ (a : { x : // 0 < x }), ∀ (n : ), a (n + 1) < a n)

    Вправа 4.4.2 (b)

    Equations
    Instances For
      theorem Rat.not_exist_sqrt_two :
      ¬∃ (x : ), x ^ 2 = 2

      Твердження 4.4.4 / Вправа 4.4.3

      theorem Rat.exist_approx_sqrt_two {ε : } ( : ε > 0) :
      x0, x ^ 2 < 2 2 < (x + ε) ^ 2

      Твердження 4.4.5