Аналіз I, Глава 10.3 #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- Relations between monotonicity and differentiability
theorem
Chapter10.derivative_of_monotone
(X : Set ℝ)
{x₀ : ℝ}
(hx₀ : ClusterPt x₀ (Filter.principal (X \ {x₀})))
{f : ℝ → ℝ}
(hmono : Monotone f)
(hderiv : DifferentiableWithinAt ℝ f X x₀)
:
Твердження 10.3.1 / Вправа 10.3.1
theorem
Chapter10.derivative_of_antitone
(X : Set ℝ)
{x₀ : ℝ}
(hx₀ : ClusterPt x₀ (Filter.principal (X \ {x₀})))
{f : ℝ → ℝ}
(hmono : Antitone f)
(hderiv : DifferentiableWithinAt ℝ f X x₀)
:
theorem
Chapter10.strictMono_of_positive_derivative
{a b : ℝ}
(hab : a < b)
{f : ℝ → ℝ}
(hderiv : DifferentiableOn ℝ f (Set.Icc a b))
(hpos : ∀ x ∈ Set.Ioo a b, derivWithin f (Set.Icc a b) x > 0)
:
StrictMonoOn f (Set.Icc a b)
Твердження 10.3.3 / Вправа 10.3.4
theorem
Chapter10.strictAnti_of_negative_derivative
{a b : ℝ}
(hab : a < b)
{f : ℝ → ℝ}
(hderiv : DifferentiableOn ℝ f (Set.Icc a b))
(hneg : ∀ x ∈ Set.Ioo a b, derivWithin f (Set.Icc a b) x < 0)
:
StrictAntiOn f (Set.Icc a b)