Introduction to Measure Theory, Section 1.3.3: Unsigned Lebesgue integrals #
A companion to (the introduction to) Section 1.3.3 of the book "An introduction to Measure Theory".
Визначення 1.3.12 (Lower unsigned Lebesgue integral)
Equations
- LowerUnsignedLebesgueIntegral f = sSup {R : EReal | ∃ (g : EuclideanSpace' d → EReal) (hg : UnsignedSimpleFunction g), ∀ (x : EuclideanSpace' d), g x ≤ f x ∧ R = hg.integ}
Instances For
Визначення 1.3.12 (Upper unsigned Lebesgue integral)
Equations
- UpperUnsignedLebesgueIntegral f = sInf {R : EReal | ∃ (g : EuclideanSpace' d → EReal) (hg : UnsignedSimpleFunction g), ∀ (x : EuclideanSpace' d), g x ≥ f x ∧ R = hg.integ}
Instances For
Вправа 1.3.10(i) (Compatibility with the simple integral)
Вправа 1.3.10(ii) (Monotonicity)
Вправа 1.3.10(iii) (Homogeneity)
Вправа 1.3.10(iv) (Equivalence)
Вправа 1.3.10(v) (Superadditivity)
Вправа 1.3.10(vi) (Subadditivity of upper integral)
Вправа 1.3.10(vii) (Divisibility)
Вправа 1.3.10(viii) (Vertical truncation)
Equations
Instances For
Вправа 1.3.10(ix) (Horizontal truncation)
Equations
Instances For
Вправа 1.3.10(x) (Reflection)
Визначення 1.3.13 (Unsigned Lebesgue integral). For Lean purposes it is convenient to assign a "junk" value to this integral when f is not unsigned measurable.
Equations
Instances For
Equations
Instances For
Вправа 1.3.11
Equations
Instances For
Equations
Instances For
Multiplying an unsigned measurable function by a ball indicator preserves measurability. This is a key helper for the horizontal truncation argument in Corollary 1.3.14.
Helper: horizontal truncation produces functions with finite measure support.
Additivity of lower integral for finite-support functions. This is the key step where we can apply eq_upperIntegral and use the sandwich argument.
Наслідок 1.3.14 (Finite additivity of Lebesgue integral )
Вправа 1.3.12 (Upper Lebesgue integral and outer measure)
Вправа 1.3.13 (Area interpretation of integral)
Вправа 1.3.14 (Uniqueness)
Вправа 1.3.15 (Translation invariance)
Вправа 1.3.16 (Linear change of variables)
Вправа 1.3.17 (Compatibility with the Riemann integral)
Лема 1.3.15 (Markov's inequality)
Вправа 1.3.18 (ii)
Вправа 1.3.18 (ii)