Documentation

Analysis.MeasureTheory.Section_1_2_2

Introduction to Measure Theory, Section 1.2.2: Lebesgue measurability #

A companion to (the introduction to) Section 1.2.2 of the book "An introduction to Measure Theory".

Лема 1.2.13(i) (Every open set is Lebesgue measurable).

Лема 1.2.13(ii) (Every closed set is Lebesgue measurable).

@[reducible, inline]
abbrev IsNull {d : } (E : Set (EuclideanSpace' d)) :
Equations
Instances For

    Лема 1.2.13(iii) (Every null set is Lebesgue measurable).

    theorem IsNull.subset {d : } {E F : Set (EuclideanSpace' d)} (hE : IsNull E) (hFE : F E) :

    A subset of a null set is null.

    Лема 1.2.13(iv) (Empty set is measurable).

    theorem LebesgueMeasurable.countable_union {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) :
    LebesgueMeasurable (⋃ (n : ), E n)

    Лема 1.2.13(vi) (Countable union of measurable sets is measurable).

    Лема 1.2.13(v) (Complement of a measurable set is measurable).

    theorem LebesgueMeasurable.finite_union {d n : } {E : Fin nSet (EuclideanSpace' d)} (hE : ∀ (i : Fin n), LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋃ (i : Fin n), E i)
    theorem LebesgueMeasurable.countable_inter {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) :
    LebesgueMeasurable (⋂ (n : ), E n)

    Лема 1.2.13(vii) (Countable intersection of measurable sets is measurable).

    theorem LebesgueMeasurable.finite_inter {d n : } {E : Fin nSet (EuclideanSpace' d)} (hE : ∀ (i : Fin n), LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋂ (i : Fin n), E i)
    theorem LebesgueMeasurable.finset_inter {d : } {α : Type u_1} [DecidableEq α] {E : αSet (EuclideanSpace' d)} {S : Finset α} (hE : iS, LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋂ iS, E i)

    Finite intersection indexed by a Finset is Lebesgue measurable.

    theorem LebesgueMeasurable.finset_union {d : } {α : Type u_1} [DecidableEq α] {E : αSet (EuclideanSpace' d)} {S : Finset α} (hE : iS, LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋃ iS, E i)

    Finite union indexed by a Finset is Lebesgue measurable.

    theorem LebesgueMeasurable.of_ae_eq {d : } {A B N : Set (EuclideanSpace' d)} (hB : LebesgueMeasurable B) (hN : IsNull N) (h_eq : A N = B N) :

    If A = B outside a null set N (i.e., A ∩ Nᶜ = B ∩ Nᶜ), then A is measurable if B is.

    Closed balls are Lebesgue measurable.

    theorem LebesgueMeasurable.TFAE {d : } (E : Set (EuclideanSpace' d)) :
    [LebesgueMeasurable E, ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U E U Lebesgue_outer_measure (U \ E) ε, ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U Lebesgue_outer_measure (symmDiff U E) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsClosed F F E Lebesgue_outer_measure (E \ F) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsClosed F Lebesgue_outer_measure (symmDiff F E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), LebesgueMeasurable E' Lebesgue_outer_measure (symmDiff E' E) ε].TFAE

    Вправа 1.2.7 (Criteria for measurability)

    Вправа 1.2.8

    @[reducible, inline]
    abbrev CantorInterval (n : ) :
    Equations
    Instances For
      @[reducible, inline]
      abbrev CantorSet :
      Equations
      Instances For

        Вправа 1.2.9 (Middle thirds Cantor set )

        @[simp]

        Лема 1.2.15(a) (Empty set has zero Lebesgue measure). The proof is missing.

        theorem Lebesgue_measure.countable_union {d : } {E : Set (EuclideanSpace' d)} (hmes : ∀ (n : ), LebesgueMeasurable (E n)) (hdisj : Set.univ.PairwiseDisjoint E) :
        Lebesgue_measure (⋃ (n : ), E n) = ∑' (n : ), Lebesgue_measure (E n)

        Лема 1.2.15(b) (Countable additivity). Strategy: m(⋃ E_n) = ∑' m(E_n) for pairwise disjoint measurable sets.

        • Direction ≤: Countable subadditivity (Lebesgue_outer_measure.union_le)
        • Direction ≥: Decompose ℝᵈ into annuli Aₘ, express each E_n = ⋃_m (E_n ∩ Aₘ), apply bounded case to the doubly-indexed family (E_n ∩ Aₘ).
        theorem Lebesgue_measure.finite_union {d n : } {E : Fin nSet (EuclideanSpace' d)} (hmes : ∀ (n : Fin n), LebesgueMeasurable (E n)) (hdisj : Set.univ.PairwiseDisjoint E) :
        Lebesgue_measure (⋃ (n : Fin n), E n) = ∑' (n : Fin n), Lebesgue_measure (E n)
        theorem Lebesgue_measure.upward_monotone_convergence {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) (hmono : ∀ (n : ), E n E (n + 1)) :
        Filter.Tendsto (fun (n : ) => Lebesgue_measure (E n)) Filter.atTop (nhds (Lebesgue_measure (⋃ (n : ), E n)))

        Вправа 1.2.11(a) (Upward monotone convergence)

        theorem Lebesgue_measure.downward_monotone_convergence {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) (hmono : ∀ (n : ), E (n + 1) E n) (hfin : ∃ (n : ), Lebesgue_measure (E n) < ) :
        Filter.Tendsto (fun (n : ) => Lebesgue_measure (E n)) Filter.atTop (nhds (Lebesgue_measure (⋂ (n : ), E n)))

        Вправа 1.2.11(b) (Downward monotone convergence)

        Вправа 1.2.15 (Inner regularity)

        theorem LebesgueMeasurable.finite_TFAE {d : } (E : Set (EuclideanSpace' d)) :
        [LebesgueMeasurable E Lebesgue_measure E < , ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U E U Lebesgue_measure U < Lebesgue_outer_measure (U \ E) ε, ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U Bornology.IsBounded U Lebesgue_outer_measure (symmDiff U E) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsCompact F F E Lebesgue_outer_measure (E \ F) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsCompact F Lebesgue_outer_measure (symmDiff F E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), LebesgueMeasurable E' Lebesgue_measure E' < Lebesgue_outer_measure (symmDiff E' E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), LebesgueMeasurable E' Bornology.IsBounded E' Lebesgue_outer_measure (symmDiff E' E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), IsElementary E' Lebesgue_outer_measure (symmDiff E' E) ε, ε > 0, ∃ (n : ) (F : Finset (Box d)), (∀ BF, B.IsDyadicAtScale n) Lebesgue_outer_measure (symmDiff (⋃ BF, B) E) ε].TFAE

        Вправа 1.2.16 (Criteria for measurability)

        Вправа 1.2.17 (Caratheodory criterion one direction)

        noncomputable def inner_measure {d : } {E : Set (EuclideanSpace' d)} (hE : Bornology.IsBounded E) :
        Equations
        Instances For
          theorem inner_measure.eq {d : } {E A : Set (EuclideanSpace' d)} (hE : Bornology.IsBounded E) (hA : IsElementary A) (hsub : E A) :

          Вправа 1.2.18(i) (Inner measure)

          Вправа 1.2.18(ii) (Inner measure)

          Вправа 1.2.18(ii) (Inner measure)

          def IsFσ {X : Type u_1} [TopologicalSpace X] (s : Set X) :
          Equations
          Instances For
            theorem LebesgueMeasurable.TFAE' {d : } (E : Set (EuclideanSpace' d)) :
            [LebesgueMeasurable E, ∃ (F : Set (EuclideanSpace' d)) (N : Set (EuclideanSpace' d)), IsGδ F IsNull N E = F \ N, ∃ (F : Set (EuclideanSpace' d)) (N : Set (EuclideanSpace' d)), IsFσ F IsNull N E = F N].TFAE

            Вправа 1.2.19

            Вправа 1.2.20 (Translation invariance)

            Вправа 1.2.21 (Change of variables)

            Вправа 1.2.21 (Change of variables)

            theorem LebesgueMeasurable.prod {d₁ d₂ : } {E₁ : Set (EuclideanSpace' d₁)} {E₂ : Set (EuclideanSpace' d₂)} (hE₁ : LebesgueMeasurable E₁) (hE₂ : LebesgueMeasurable E₂) :

            Вправа 1.2.22

            theorem Lebesgue_measure.prod {d₁ d₂ : } {E₁ : Set (EuclideanSpace' d₁)} {E₂ : Set (EuclideanSpace' d₂)} (hE₁ : LebesgueMeasurable E₁) (hE₂ : LebesgueMeasurable E₂) :

            Вправа 1.2.22

            theorem Lebesgue_measure.unique {d : } (m : Set (EuclideanSpace' d)EReal) (h_empty : m = 0) (h_pos : ∀ (E : Set (EuclideanSpace' d)), 0 m E) (h_add : ∀ (E : Set (EuclideanSpace' d)), Set.univ.PairwiseDisjoint E(∀ (n : ), LebesgueMeasurable (E n))m (⋃ (n : ), E n) = ∑' (n : ), m (E n)) (hnorm : m (Box.unit_cube d) = 1) (E : Set (EuclideanSpace' d)) :

            Вправа 1.2.23 (Uniqueness of Lebesgue measure)

            instance IsElementary.ae_equiv {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
            Setoid (Set A)

            Вправа 1.2.24(i) (Lebesgue measure as the completion of elementary measure)

            Equations
            Equations
            Instances For
              def IsElementary.ae_quot {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (E : Set A) :
              Equations
              Instances For
                noncomputable def IsElementary.dist {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
                hA.ae_subsetshA.ae_subsets

                Вправа 1.2.24(ii) (Lebesgue measure as the completion of elementary measure)

                Equations
                Instances For
                  noncomputable instance IsElementary.metric {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :

                  Вправа 1.2.24(ii) (Lebesgue measure as the completion of elementary measure)

                  Equations
                  • hA.metric = { dist := hA.dist, dist_self := , dist_comm := , dist_triangle := , edist_dist := , uniformity_dist := , cobounded_sets := , eq_of_dist_eq_zero := }

                  Вправа 1.2.24(ii) (Lebesgue measure as the completion of elementary measure)

                  noncomputable def IsElementary.ae_elem {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
                  Equations
                  Instances For
                    noncomputable def IsElementary.ae_measurable {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
                    Equations
                    Instances For

                      Вправа 1.2.24(iii) (Lebesgue measure as the completion of elementary measure)

                      Вправа 1.2.24(c) (Lebesgue measure as the completion of elementary measure)

                      noncomputable def IsElementary.ae_measure {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (E : hA.ae_measurable) :
                      Equations
                      Instances For
                        noncomputable def IsElementary.ae_elem_measure {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (E : hA.ae_elem) :
                        Equations
                        Instances For
                          theorem IsElementary.ae_measure_eq_completion {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (m : hA.ae_subsets) :
                          (ContinuousOn m hA.ae_measurable ∀ (E : hA.ae_elem), m E = hA.ae_elem_measure E) ∀ (E : hA.ae_measurable), m E = hA.ae_measure E

                          Вправа 1.2.24(iv) (Lebesgue measure as the completion of elementary measure)

                          @[reducible, inline]
                          noncomputable abbrev IsCurve {d : } (C : Set (EuclideanSpace' d)) :
                          Equations
                          Instances For
                            theorem IsCurve.null {d : } (hd : d 2) {C : Set (EuclideanSpace' d)} (hC : IsCurve C) :

                            Вправа 1.2.25(i)