
smol/fun

How to read this file?
(a smol/fun program)

● Correct answer
● Other answer 1
● Other answer 2

Why the correct answer is correct

arithmetic operators
(deffun (f o) (o 1 1))
(f +)

● Error
● Syntax error
● 2

The correct answer is Error because smol/fun doesn’t allow programmers to pass functions as
arguments. 2 would have been correct if smol/fun permits higher-order functions, i.e. functions
that consume or produce functions, such as f.

0 as condition
(if 0 #t #f)

● #t
● #f

In smol/fun, every value other than #f is considered “true”. You might find this confusing if you
are familiar with Python or C.

redeclare var using defvar
(defvar x 0)
(defvar y x)

(defvar x 2)
x
y

● Error
● 2; 0
● 0; 0
● Nothing is printed

You can’t redeclare x in the same scope level (the global, in this case).

expose local defvar
(defvar x 42)
(deffun (create)
(defvar y 42)
y)

(create)
(equal? x y)

● Error
● 42; #t

The variable y is declared locally. You can’t use it outside of the create function.

pair?
(pair? (pair 1 2))
(pair? (ivec 1 2))
(pair? '#(1 2))
(pair? '(1 2))

● #t #t #t #f
● #t #f #t #f
● #t #t #t #t

In smol, pair is a special-case of ivec. The last vector-like expression is Racket’s way of writing
list 1, 2.

let* and let
(let* ([v 1]

[w (+ v 2)]
[y (* w w)])

(let ([v 3]
[y (* v w)])

y))

● 3
● 9
● 27

When the inner y is created with (* v w), the v is the outer v.

defvar and let
(defvar x 3)
(defvar y (let ([y 6] [x 5]) x))

(* x y)

● 15
● 25
● 9

The global y is defined to be equal to the local x, which is 5.

fun-id equals to arg-id
(deffun (f f) f)
(f 5)

● 5
● Error

The parameter f shadows the function name f.

scoping rule of let
(let ([x 4]

[y (+ x 10)])
y)

● Error
● 14

The let expression binds x and y simultaneously, so y cannot see x. If you replace let with let*,
the program will produce 14.

the right component of ivec
(right (ivec 1 2 3))

● Error
● 2

The documentation of `right` says that the input must be of type Pair, and an ivec of size 3 can't
be a Pair. If the smol/fun does not check that its parameter is a pair, however, this will return 2.

identifiers
(defvar x 5)

(deffun (reassign var_name new_val)
(defvar var_name new_val)
(pair var_name x))

(reassign x 6)
x

● '#(6 5) 5
● '#(6 6) 5
● '#(6 6) 6
● Error
● Nothing is printed

The inner defvar declare var_name locally, which shadows the parameter var_name. Neither
var_name has anything to do with x, which is defined globally.

defvar, deffun, and let
(defvar a 1)
(deffun (what-is-a) a)

(let ([a 2])
(ivec
(what-is-a)
a))

● '#(1 2)
● '#(2 2)

The function what-is-a is defined globally. When it uses the variable a, it looks up in the global
scope.

syntax pitfall
(deffun (f a b) a + b)
(f 5 10)

● 10
● 15
● 5
● Error

It is easy to forget smol/fun uses prefix parenthetical syntax. To do the right thing, the deffun
should be (deffun (f a b) (+ a b)). This program produces 10 because when smol/fun
computes the value of (f 5 10), it computes a, and computes +, and finally computes b and
returns b’s value, which is 10.

